1
|
Chand S, Kumar S, Sharma AK, Singh KN. Metal-Free Decarboxylative Cyanomethylation of β-Aryl/Heteroaryl Substituted α,β-Unsaturated Carboxylic Acids to γ-Ketonitriles. Org Lett 2024. [PMID: 39526845 DOI: 10.1021/acs.orglett.4c03994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A decarboxylative cyanomethylation of β-aryl/heteroaryl substituted α,β-unsaturated carboxylic acids has been accomplished via C(sp3)-H activation of alkyl nitriles to afford diverse γ-ketonitriles by making use of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and tert-butyl hydroperoxide (TBHP). The present report offers a metal-free approach and is featured with a broad substitution pattern and functional group compatibility.
Collapse
Affiliation(s)
- Shiv Chand
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Saurabh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anup Kumar Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
2
|
Synthesis of Novel 1,3,4-Oxadiazole-Derived α-Aminophosphonates/ α-Aminophosphonic Acids and Evaluation of Their In Vitro Antiviral Activity against the Avian Coronavirus Infectious Bronchitis Virus. Pharmaceutics 2022; 15:pharmaceutics15010114. [PMID: 36678743 PMCID: PMC9867332 DOI: 10.3390/pharmaceutics15010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
An efficient and simple approach has been developed for the synthesis of eight dialkyl/aryl[(5-phenyl-1,3,4-oxadiazol-2-ylamino)(aryl)methyl]phosphonates through the Pudovik-type reaction of dialkyl/arylphosphite with imines, obtained from 5-phenyl-1,3,4-oxadiazol-2-amine and aromatic aldehydes, under microwave irradiation. Five of them were hydrolyzed to lead to the corresponding phosphonic acids. Selected synthesized compounds were screened for their in vitro antiviral activity against the avian bronchitis virus (IBV). In the MTT cytotoxicity assay, the dose-response curve showed that all test compounds were safe in the range concentration of 540-1599 µM. The direct contact of novel synthesized compounds with IBV showed that the diethyl[(5-phenyl-1,3,4-oxadiazol-2-ylamino)(4-trifluoromethoxyphenyl)methyl]phosphonate (5f) (at 33 µM) and the [(5-phenyl-1,3,4-oxadiazol-2-ylamino)(4-trifluoromethylphenyl)methyl] phosphonic acid (6a) (at 1.23 µM) strongly inhibited the IBV infectivity, indicating their high virucidal activity. However, virus titers from IBV-infected Vero cells remained unchanged in response to treatment with the lowest non-cytotoxic concentrations of synthesized compounds suggesting their incapacity to inhibit the virus replication inside the host cell. Lack of antiviral activity might presumably be ascribed to their polarity that hampers their diffusion across the lipophilic cytoplasmic membrane. Therefore, the interactions of 5f and 6a were analyzed against the main coronavirus protease, papain-like protease, and nucleocapsid protein by molecular docking methods. Nevertheless, the novel 1,3,4-oxadiazole-based α-aminophosphonic acids and α-amino-phosphonates hold potential for developing new hygienic virucidal products for domestic, chemical, and medical uses.
Collapse
|
3
|
Xue F, Chen X, He Z. Diethyl phosphite mediated reductive [1 + 4] annulation of α-ketoesters with α, β-unsaturated ketones and synthesis of polysubstituted 2,3-dihydrofurans. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Yun Y, Miao Y, Sun X, Sun J, Wang X. Synthesis and biological evaluation of 2-arylbenzofuran derivatives as potential anti-Alzheimer's disease agents. J Enzyme Inhib Med Chem 2021; 36:1346-1356. [PMID: 34134572 PMCID: PMC8765280 DOI: 10.1080/14756366.2021.1940993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is a type of progressive dementia caused by degeneration of the nervous system. A single target drug usually does not work well. Therefore, multi-target drugs are designed and developed so that one drug can specifically bind to multiple targets to ensure clinical effectiveness and reduce toxicity. We synthesised a series of 2-arylbenzofuran derivatives and evaluated their in vitro activities. 2-Arylbenzofuran compounds have good dual cholinesterase inhibitory activity and β-secretase inhibitory activity. The IC50 value of compound 20 against acetylcholinesterase inhibition (0.086 ± 0.01 µmol·L-1) is similar to donepezil (0.085 ± 0.01 µmol·L-1) and is better than baicalein (0.404 ± 0.04 µmol·L-1). And most of the compounds have good BACE1 inhibitory activity, of which 3 compounds (8, 19 and 20) show better activity than baicalein (0.087 ± 0.03 µmol·L-1). According to experimental results, 2-arylbenzofuran compounds provide an idea for drug design to develop prevention and treatment for AD.
Collapse
Affiliation(s)
- Yinling Yun
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuhang Miao
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoya Sun
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Sun
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaojing Wang
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
5
|
Saidani W, Wahbi A, Sellami B, Helali MA, Khazri A, Mahmoudi E, Touil S, Joubert O, Beyrem H. Toxicity assessment of organophosphorus in Ruditapes decussatus via physiological, chemical and biochemical determination: A case study with the compounds γ-oximo- and γ-amino-phosphonates and phosphine oxides. MARINE POLLUTION BULLETIN 2021; 169:112556. [PMID: 34082359 DOI: 10.1016/j.marpolbul.2021.112556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Organophosphorus derivatives are widely used in human health care and have been detected in aquatic ecosystems. These compounds may pose significant risks to non-target exposed organisms and only limited studies are available on bioconcentration and the effects of organophosphorus derivatives on marine organisms. The aim of this work was to evaluate the possible toxic effects of two concentrations (20 and 40 μg/L) of γ-oximo- and γ-amino-phosphonates and phosphine oxides in mediterranean clams Ruditapes decussatus exposed for 14 days using different biomarkers and the changes of filtration and respiration rate. The use of clams in ecotoxicity evaluation is thus mandatory to assess the feasibility of assessing oxidative stress on R. decussatus after being exposed to γ-oximo- and γ-amino-phosphonates and phosphine oxides. The oxidative status was analyzed by measuring oxidative stress biomarkers RNS and ROS production in mitochondria, superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferases (GSTs), lipid peroxidation (LPO) and acetylcholinesterase (AChE), whose alteration was indicative of organophosphorus exposure, in both gills and digestive gland of the clams. No significant alterations in RNS, ROS production, SOD, CAT and AChE activities and MDA content were observed in both organs of clams treated with γ-oximophosphine oxides. It was possible then to hypothesize that γ-oximophosphine oxides may have probably exerted an incomplete alteration of antioxidant defenses and damage, which was changed by the activation of defense mechanisms. On the contrary, oxidative stress parameters were changed after exposure to γ-amino-phosphonates and phosphine oxides. In addition, metals accumulation, filtration and respiration rates were altered following exposure to all the studied organophosphorus compounds.
Collapse
Affiliation(s)
- Wiem Saidani
- Laboratory of Environment Biomonitoring, Unit of coastal Ecology and Ecotoxicology, Faculty of Sciences of Bizerte, Jarzouna 7021, University of Carthage, Tunisia
| | - Aymen Wahbi
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), University of Carthage, Faculty of Sciences of Bizerte, CP 7021 Jarzouna, Tunisia
| | - Badreddine Sellami
- National Institute of Science and Technology of the Sea, Tabarka, Tunisia
| | - Mohamed Amine Helali
- Laboratory of Mineral Resources and Environment, Department of Geology, Faculty of Sciences of Tunis, University of Tunis-El Manar, 2092, Tunisia
| | - Abdelhafidh Khazri
- Laboratory of Environment Biomonitoring, Unit of coastal Ecology and Ecotoxicology, Faculty of Sciences of Bizerte, Jarzouna 7021, University of Carthage, Tunisia
| | - Ezzeddine Mahmoudi
- Laboratory of Environment Biomonitoring, Unit of coastal Ecology and Ecotoxicology, Faculty of Sciences of Bizerte, Jarzouna 7021, University of Carthage, Tunisia
| | - Soufiane Touil
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), University of Carthage, Faculty of Sciences of Bizerte, CP 7021 Jarzouna, Tunisia
| | - Olivier Joubert
- Institute Jean Lamour, UMR 7198, University of Lorraine, CNRS, IJL, F-54000 Nancy, France
| | - Hamouda Beyrem
- Laboratory of Environment Biomonitoring, Unit of coastal Ecology and Ecotoxicology, Faculty of Sciences of Bizerte, Jarzouna 7021, University of Carthage, Tunisia
| |
Collapse
|
6
|
Jebli N, Hamimed S, Van Hecke K, Cavalier J, Touil S. Synthesis, Antimicrobial Activity and Molecular Docking Study of Novelα‐(Diphenylphosphoryl)‐ andα‐(Diphenylphosphorothioyl)cycloalkanone Oximes. Chem Biodivers 2020; 17:e2000217. [DOI: 10.1002/cbdv.202000217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Nejib Jebli
- University of CarthageFaculty of Sciences of BizerteLaboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11) CP 7021- Jarzouna Tunisia
| | - Selma Hamimed
- University of CarthageFaculty of Sciences of BizerteLaboratory of Biochemistry and Molecular Biology 7021 Jarzouna Tunisia
| | - Kristof Van Hecke
- XStructDepartment of Inorganic and Physical Chemistry Krijgslaan 281-S3 CP 9000-Ghent Belgium
| | | | - Soufiane Touil
- University of CarthageFaculty of Sciences of BizerteLaboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11) CP 7021- Jarzouna Tunisia
| |
Collapse
|
7
|
Vaknine S, Soreq H. Central and peripheral anti-inflammatory effects of acetylcholinesterase inhibitors. Neuropharmacology 2020; 168:108020. [PMID: 32143069 DOI: 10.1016/j.neuropharm.2020.108020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/09/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
Acetylcholinesterase (AChE) inhibitors modulate acetylcholine hydrolysis and hence play a key role in determining the cholinergic tone and in implementing its impact on the cholinergic blockade of inflammatory processes. Such inhibitors may include rapidly acting small molecule AChE-blocking drugs and poisonous anti-AChE insecticides or war agent inhibitors which penetrate both body and brain. Notably, traumatized patients may be hyper-sensitized to anti-AChEs due to their impaired cholinergic tone, higher levels of circulation pro-inflammatory cytokines and exacerbated peripheral inflammatory responses. Those largely depend on the innate-immune system yet reach the brain via vagus pathways and/or disrupted blood-brain-barrier. Other regulators of the neuro-inflammatory cascade are AChE-targeted microRNAs (miRs) and synthetic chemically protected oligonucleotide blockers thereof, whose size prevents direct brain penetrance. Nevertheless, these larger molecules may exert parallel albeit slower inflammatory regulating effects on brain and body tissues. Additionally, oligonucleotide aptamers interacting with innate immune Toll-Like Receptors (TLRs) may control inflammation through diverse routes and in different rates. Such aptamers may compete with the action of both small molecule inhibitors and AChE-inhibiting miRs in peripheral tissues including muscle and intestine. However, rapid adaptation processes, visualized in neuromuscular junctions enable murine survival under otherwise lethal anti-cholinesterase exposure; and both miR inhibitors and TLR-modulating aptamers may exert body-brain signals protecting experimental mice from acute inflammation. The complex variety of AChE inhibiting molecules identifies diverse body-brain communication pathways which may rapidly induce long-lasting central reactions to peripheral stressful and inflammatory insults in both mice and men. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
Affiliation(s)
- Shani Vaknine
- The Edmond and Lily Safra Center of Brain Science, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel.
| |
Collapse
|
8
|
Zengin Kurt B. Synthesis and anticholinesterase activity of novel non-hepatotoxic naphthyridine-11-amine derivatives. Mol Divers 2018; 23:625-638. [PMID: 30515633 DOI: 10.1007/s11030-018-9897-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
In the present study, 14 novel naphthyridine-11-amine derivatives were synthesized and their inhibitory effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) were evaluated. 12-(4-Fluorophenyl)-1,2,3,4,7,8,9,10-octahydrodibenzo[b,g][1, 8]naphthyridin-11-amine (4a) was found to be the most potent AChE inhibitor with IC50 value of 0.091 µM, and 12-(2,3-dimethoxyphenyl)-1,2,3,4,7,8,9,10-octahydrodibenzo[b,g][1,8]naphthyridin-11-amine (4h) exhibited the strongest inhibition against BuChE with IC50 value of 0.182 µM. Additionally, hepatocellular carcinoma (HepG2) cell cytotoxicity assay for the synthesized compounds was investigated and the results showed negligible cell death. Log P values of the synthesized compounds were also calculated using ChemSketch program. Moreover, the blood-brain barrier (BBB) permeability of the potent AChE inhibitor (4a) was assessed by the widely used parallel artificial membrane permeability assay (PAMPA-BBB). The results showed that 4a is capable of crossing the BBB.
Collapse
Affiliation(s)
- Belma Zengin Kurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093, Istanbul, Turkey.
| |
Collapse
|
9
|
Cavallaro V, Moglie YF, Murray AP, Radivoy GE. Alkynyl and β-ketophosphonates: Selective and potent butyrylcholinesterase inhibitors. Bioorg Chem 2018; 77:420-428. [DOI: 10.1016/j.bioorg.2018.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 02/08/2023]
|
10
|
Gao XH, Liu LB, Liu HR, Tang JJ, Kang L, Wu H, Cui P, Yan J. Structure-activity relationship investigation of benzamide and picolinamide derivatives containing dimethylamine side chain as acetylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2017; 33:110-114. [PMID: 29166796 PMCID: PMC6009985 DOI: 10.1080/14756366.2017.1399885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A series of benzamide and picolinamide derivatives containing dimethylamine side chain (4a–4c and 7a–7i) were synthesised and evaluated for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity in vitro. Structure–activity relationship investigation revealed that the substituted position of dimethylamine side chain markedly influenced the inhibitory activity and selectivity against AChE and BChE. In addition, it seemed that the bioactivity of picolinamide amide derivatives was stronger than that of benzamide derivatives. Among them, compound 7a revealed the most potent AChE inhibitory activity (IC50: 2.49 ± 0.19 μM) and the highest selectivity against AChE over BChE (Ratio: 99.40). Enzyme kinetic study indicated that compound 7a show a mixed-type inhibition against AChE. The molecular docking study revealed that this compound can bind with both the catalytic site and the peripheral site of AChE.
Collapse
Affiliation(s)
- Xiao-Hui Gao
- a Key Laboratory Breeding Base of Hu'nan Oriented Fundamental and Applied Research of Innovative Pharmaceutics, College of Pharmacy , Changsha Medical University , Changsha , China
| | - Lin-Bo Liu
- b College of Chemistry and Chemical Engineering , Hu'nan University , Changsha , China
| | - Hao-Ran Liu
- b College of Chemistry and Chemical Engineering , Hu'nan University , Changsha , China
| | - Jing-Jing Tang
- b College of Chemistry and Chemical Engineering , Hu'nan University , Changsha , China
| | - Lu Kang
- b College of Chemistry and Chemical Engineering , Hu'nan University , Changsha , China
| | - Hongnian Wu
- c College of Pharmacy , Hu'nan University of Chinese Medicine , Changsha , China
| | - Peiwu Cui
- c College of Pharmacy , Hu'nan University of Chinese Medicine , Changsha , China
| | - Jianye Yan
- c College of Pharmacy , Hu'nan University of Chinese Medicine , Changsha , China
| |
Collapse
|