1
|
Jayathuna MA, Ahmed S, Kim YG, Gajendiran M, Kim K, Rahiman AK. Ferrocenylimine-based homoleptic metal(II) complexes: Theoretical, biocompatibility, in vitro anti-proliferative, and in silico molecular docking and pharmacokinetics studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Rashid F, Uddin N, Ali S, Haider A, Tirmizi SA, Diaconescu PL, Iqbal J. New triorganotin(iv) compounds with aromatic carboxylate ligands: synthesis and evaluation of the pro-apoptotic mechanism. RSC Adv 2021; 11:4499-4514. [PMID: 35424423 PMCID: PMC8694426 DOI: 10.1039/d0ra06695h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023] Open
Abstract
Three new organotin(iv) carboxylate compounds were synthesized and structurally characterized by elemental analysis and FT-IR and multinuclear NMR (1H, 13C, 119Sn) spectroscopy. Single X-ray crystallography reveals that compound C2 has a monoclinic crystal system with space group P21/c having distorted bipyramidal geometry defined by C3SnO2. The synthesized compounds were screened for drug-DNA interactions via UV-Vis spectroscopy and cyclic voltammetry showing good activity with high binding constants. Theoretical investigations also support the reactivity of the compounds as depicted from natural bond orbital (NBO) analysis using Gaussian 09. Synthesized compounds were initially evaluated on two cancer (HeLa and MCF-7) cell lines and cytotoxicity to normal cells was evaluated using a non-cancerous (BHK-21) cell line. All the compounds were found to be active, with IC50 values less than that of the standard drug i.e. cisplatin. The cytotoxic effect of the most potent compound C2 was confirmed by LDH cytotoxicity assay and fluorescence imaging after PI staining. Apoptotic features in compound C2 treated cancer cells were visualized after DAPI staining while regulation of apoptosis was observed by reactive oxygen species generation, binding of C2 with DNA, a change in mitochondrial membrane potential and expression of activated caspase-9 and caspase-3 in cancer cells. Results are indicative of activation of the intrinsic pathway of apoptosis in C2 treated cancer cells.
Collapse
Affiliation(s)
- Faisal Rashid
- Centre for Advanced Drug Research COMSATS University Islamabad, Abbottabad Campus Abbottabad-22060 Pakistan
| | - Noor Uddin
- Department of Chemistry, Quaid-i-Azam University 45320-Islamabad Pakistan
| | - Saqib Ali
- Department of Chemistry, Quaid-i-Azam University 45320-Islamabad Pakistan
| | - Ali Haider
- Department of Chemistry, Quaid-i-Azam University 45320-Islamabad Pakistan
| | - Syed Ahmad Tirmizi
- Department of Chemistry, Quaid-i-Azam University 45320-Islamabad Pakistan
| | - Paula L Diaconescu
- Department of Chemistry and Biochemistry, University of California Los Angeles607 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Jamshed Iqbal
- Centre for Advanced Drug Research COMSATS University Islamabad, Abbottabad Campus Abbottabad-22060 Pakistan
| |
Collapse
|
3
|
Zia M, Hameed S, Ahmad I, Tabassum N, Yousaf S. Synthesis, characterization, electrochemical and DNA binding studies of regio-isomeric sulfonyl esters of substituted isoxazoles. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Uddin N, Rashid F, Ali S, Tirmizi SA, Ahmad I, Zaib S, Zubair M, Diaconescu PL, Tahir MN, Iqbal J, Haider A. Synthesis, characterization, and anticancer activity of Schiff bases. J Biomol Struct Dyn 2019; 38:3246-3259. [PMID: 31411114 DOI: 10.1080/07391102.2019.1654924] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Five Schiff bases, 2-((3-chlorophenylimino)methyl)-5-(diethylamino)phenol (L1), 2-((2,4-dichlorophenylimino)methyl)-5-(diethylamino)phenol (L2), 5-(diethylamino)-2-((3,5-dimethylphenylimino)methyl)phenol (L3), 2-((2-chloro-4-methylphenylimino)methyl)-5-(diethylamino)phenol (L4), and 5-(diethylamino)-2-((2,6-diethylphenylimino)methyl)phenol (L5) were synthesized and characterized by elemental analysis, FT-IR, 1H and 13C NMR spectroscopy. Three of the compounds (L1, L2, and L4) were analyzed by single crystal X-ray diffraction: L1 and L2 crystallized in orthorhombic P212121 and Pca21 space group, respectively, while L4 crystallized in monoclinic P21/c space group. Theoretical investigations were performed for all the synthesized compounds to evaluate the structural details. Drug-DNA interaction studies results from UV-Vis spectroscopy and electrochemistry complement that the compounds bind to DNA through electrostatic interactions. The cytotoxicity of the synthesized compounds was studied against cancer cell lines (HeLa and MCF-7) and a normal cell line (BHK-21) by means of an MTT assay compared to carboplatin, featuring IC50 values in the micromolar range. The pro-apoptotic mechanism for the active compound L5 was evaluated by fluorescence microscopy, cell cycle analysis, caspase-9 and -3 activity, reactive oxygen species production, and DNA binding studies that further strengthen the results of that L5 is a potent drug against cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Noor Uddin
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Faisal Rashid
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Saqib Ali
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Iqbal Ahmad
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Paula L Diaconescu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Ali Haider
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
5
|
Electrochemical Characterization of Central Action Tricyclic Drugs by Voltammetric Techniques and Density Functional Theory Calculations. Pharmaceuticals (Basel) 2019; 12:ph12030116. [PMID: 31374819 PMCID: PMC6789599 DOI: 10.3390/ph12030116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/23/2023] Open
Abstract
This work details the study of the redox behavior of the drugs cyclobenzaprine (CBP), amitriptyline (AMP) and nortriptyline (NOR) through voltammetric methods and computational chemistry. Results obtained in this study show that the amine moiety of each compound is more likely to undergo oxidation at 1a at Ep1a ≈ 0.69, 0.79, 0.93 V (vs. Ag/AgCl/KClsat) for CBP, AMP and NOR, respectively. Moreover, CBP presented a second peak, 2a at Ep2a ≈ 0.98 V (vs. Ag/AgCl/KClsat) at pH 7.0. Furthermore, the electronic structure calculation results corroborate the electrochemical assays regarding the HOMO energies of the lowest energy conformers of each molecule. The mechanism for each anodic process is proposed according to electroanalytical and computational chemistry findings, which show evidence that the methods herein employed may be a valuable alternative to study the redox behavior of structurally similar drugs.
Collapse
|
6
|
Nigar A, Shabbir M, Akhter Z, Sabahat S, Fatmi MQ, Bolte M, Ahmad I, Janjua NK, Mehmood S. Synthesis, characterization, docking and electrochemical studies of nitroaromatic amides. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|