1
|
Li H, Liu J, Wang J, Li Z, Yu J, Huang X, Wan B, Meng X, Zhang X. Improving the Anti-Tumor Effect of Indoleamine 2,3-Dioxygenase Inhibitor CY1-4 by CY1-4 Nano-Skeleton Drug Delivery System. J Funct Biomater 2024; 15:372. [PMID: 39728172 DOI: 10.3390/jfb15120372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Background: CY1-4, 9-nitropyridine [2',3':4,5] pyrimido [1,2-α] indole -5,11- dione, is an indoleamine 2,3-dioxygenase (IDO) inhibitor and a poorly water-soluble substance. It is very important to increase the solubility of CY1-4 to improve its bioavailability and therapeutic effect. In this study, the mesoporous silica nano-skeleton carrier material Sylysia was selected as the carrier to load CY1-4, and then the CY1-4 nano-skeleton drug delivery system (MSNM@CY1-4) was prepared by coating the hydrophilic polymer material Hydroxypropyl methylcellulose (HPMC) and the lipid material Distearoylphosphatidyl-ethanolamine-poly(ethylene glycol)2000 (DSPE-PEG2000) to improve the anti-tumor effect of CY1-4. Methods: The solubility and dissolution of MSNM@CY1-4 were investigated, and its bioavailability, anti-tumor efficacy, IDO inhibitory ability and immune mechanism were evaluated in vivo. Results: CY1-4 was loaded in MSNM@CY1-4 in an amorphous form, and MSNM@CY1-4 could significantly improve the solubility (up to about 200 times) and dissolution rate of CY1-4. In vivo studies showed that the oral bioavailability of CY1-4 in 20 mg/kg MSNM@CY1-4 was about 23.9-fold more than that in 50 mg/kg CY1-4 suspension. In B16F10 tumor-bearing mice, MSNM@CY1-4 significantly inhibited tumor growth, prolonged survival time, significantly inhibited IDO activity in blood and tumor tissues, and reduced Tregs in tumor tissues and tumor-draining lymph nodes to improve anti-tumor efficacy. Conclusions: The nano-skeleton drug delivery system (MSNM@CY1-4) constructed in this study is a potential drug delivery platform for improving the anti-tumor effect of oral poorly water-soluble CY1-4.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Junwei Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jingru Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuoyue Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jianming Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xu Huang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bingchuan Wan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiangbao Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, China
| |
Collapse
|
2
|
Jiang SW, Qi X, Deng H, Gao Y, Yuan Y, Dang X, Xu B, Ma S, Xie T, Ye XY, Hui Z. Design, synthesis and anti-tumor efficacy evaluation of novel 1,3-diaryl propane-based polyphenols obtained from Claisen rearrangement reaction. Bioorg Chem 2023; 140:106753. [PMID: 37595397 DOI: 10.1016/j.bioorg.2023.106753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 07/22/2023] [Indexed: 08/20/2023]
Abstract
Polyphenols such as resveratrol, honokiol and nordihydroguaiaretic acid are widely existing in nature products or synthetic compounds with interesting biological activities. Inspired by their structural feature, a total of 49 1,3-diaryl propane-based polyphenols were designed and synthesized through Claisen rearrangement reaction. New compounds were initially assessed for their anti-proliferative activities against various cancer cell lines (PC-3, U87MG, U251, HCT116) at a concentration of 50 μM, and the results guided the SAR of this series of compounds. Further screening of selected compounds against seven cancer cell lines (three additional colon cancer cell lines namely COLO205, HT29 and SW480 were chosen) led to the identification of two advanced leads 2t and 3t with IC50 values ranging from 8.2 ± 0.1 to 19.3 ± 1.9 μM. Both compounds also showed promising anti-proliferative activities against COLO205 in dose- and time-dependent manners. Furthermore, 2t and 3t exhibited good anti-tumor efficacy in COLO205 xenografted mice model with TGI values ranging from 38% to 58%. These results warrant the further investigation of this series of compounds.
Collapse
Affiliation(s)
- Song-Wei Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China; Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China
| | - Xiang Qi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China; Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China
| | - Haowen Deng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China; Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China
| | - Yuan Gao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - Yinghui Yuan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China; Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China
| | - Xiawen Dang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China; Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China
| | - Bing Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China; Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China
| | - Shitang Ma
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China; Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China.
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China; Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China.
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, China; Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, China.
| |
Collapse
|
3
|
Singh R, Salunke DB. Diverse chemical space of indoleamine-2,3-dioxygenase 1 (Ido1) inhibitors. Eur J Med Chem 2020; 211:113071. [PMID: 33341650 DOI: 10.1016/j.ejmech.2020.113071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/20/2022]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) catalyses the first and rate limiting step of kynurenine pathway accounting for the major contributor of L-Tryptophan degradation. The Kynurenine metabolites are identified as essential cofactors, antagonists, neurotoxins, immunomodulators, antioxidants as well as carcinogens. The catalytic active site of IDO1 enzyme consists of hydrophobic Pocket-A positioned in the distal heme site and remains connected to a second hydrophobic Pocket-B towards the entrance of the active site. IDO1 enzyme also relates directly to the modulation of the innate and adaptive immune system. Various studies proved that the over expression of IDO1 enzyme play a predominant role in the escape of immunity during cancer progression. Recently, there has been considerable interest in evaluating the potential of IDO1 inhibitors to mobilize the body's immune system against solid tumours. In the last two decades, enormous attempts to advance new IDO1 inhibitors are on-going both in pharmaceutical industries and in academia which resulted in the discovery of a diverse range of selective and potent IDO1 inhibitors. The IDO1 inhibitors have therapeutic utility in various diseases and in the near future, it may have utility in the treatment of COVID-19. Despite various reviews on IDO1 inhibitors in last five years, none of the reviews provide a complete overview of diverse chemical space including naturally occurring and synthetic IDO1 inhibitors with detailed structure activity relationship studies. The present work provides a complete overview on the IDO1 inhibitors known in the literature so far along with the Structure-Activity Relationship (SAR) in each class of compounds.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160 014, India
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160 014, India; National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
4
|
Liu X, Zhang Y, Duan H, Luo Q, Liu W, Liang L, Wan H, Chang S, Hu J, Shi H. Inhibition Mechanism of Indoleamine 2, 3-Dioxygenase 1 (IDO1) by Amidoxime Derivatives and Its Revelation in Drug Design: Comparative Molecular Dynamics Simulations. Front Mol Biosci 2020; 6:164. [PMID: 32047753 PMCID: PMC6997135 DOI: 10.3389/fmolb.2019.00164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/31/2019] [Indexed: 02/05/2023] Open
Abstract
For cancer treatment, in addition to the three standard therapies of surgery, chemotherapy, and radiotherapy, immunotherapy has become the fourth internationally-recognized alternative treatment. Indoleamine 2, 3-dioxygenase 1 (IDO1) catalyzes the conversion of tryptophan to kynurenine causing lysine depletion, which is an important target in the research and development of anticancer drugs. Epacadostat (INCB024360) is currently one of the most potent IDO1 inhibitors, nevertheless its inhibition mechanism still remains elusive. In this work, comparative molecular dynamics simulations were performed to reveal that the high inhibitory activity of INCB024360 mainly comes from two aspects: disturbing the ligand delivery tunnel and then preventing small molecules such as oxygen and water molecules from accessing the active site, as well as hindering the shuttle of substrate tryptophan with product kynurenine through the heme binding pocket. The scanning of key residues showed that L234 and R231 residues both were crucial to the catalytic activity of IDO1. With the association with INCB024360, L234 forms a stable hydrogen bond with G262, which significantly affects the spatial position of G262-A264 loop and then greatly disturbs the orderliness of ligand delivery tunnel. In addition, the cleavage of hydrogen bond between G380 and R231 increases the mobility of the GTGG conserved region, leading to the closure of the substrate tryptophan channel. This work provides new ideas for understanding action mechanism of amidoxime derivatives, improving its inhibitor activity and developing novel inhibitors of IDO1.
Collapse
Affiliation(s)
- Xinyu Liu
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yiwen Zhang
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huaichuan Duan
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Qing Luo
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Wei Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Hua Wan
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Shan Chang
- School of Electrical and Information Engineering, Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Hubing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
5
|
Ye Z, Yue L, Shi J, Shao M, Wu T. Role of IDO and TDO in Cancers and Related Diseases and the Therapeutic Implications. J Cancer 2019; 10:2771-2782. [PMID: 31258785 PMCID: PMC6584917 DOI: 10.7150/jca.31727] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
Kynurenine (Kyn) pathway is a significant metabolic pathway of tryptophan (Trp). The metabolites of the Kyn pathway are closely correlated with numerous diseases. Two main enzymes, indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO or TDO2), regulate the first and rate-limiting step of the Kyn pathway. These enzymes are directly or indirectly involved in various diseases, including inflammatory diseases, cancer, diabetes, and mental disorders. Presently, an increasing number of potential mechanisms have been revealed. In the present review, we depict the structure of IDO and TDO and explicate their functions in various diseases to facilitate a better understanding of them and to indicate new therapeutic plans to target them. Moreover, we summarize the inhibitors of IDO/TDO that are currently under development and their efficacy in the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Zixiang Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linxiu Yue
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiachen Shi
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Shao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|