1
|
Chen L, Gong J, Yong X, Li Y, Wang S. A review of typical biological activities of glycyrrhetinic acid and its derivatives. RSC Adv 2024; 14:6557-6597. [PMID: 38390501 PMCID: PMC10882267 DOI: 10.1039/d3ra08025k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Glycyrrhetinic acid, a triterpenoid compound primarily sourced from licorice root, exhibits noteworthy biological attributes, including anti-inflammatory, anti-tumor, antibacterial, antiviral, and antioxidant effects. Despite these commendable effects, its further advancement and application, especially in clinical use, have been hindered by its limited druggability, including challenges such as low solubility and bioavailability. To enhance its biological activity and pharmaceutical efficacy, numerous research studies focus on the structural modification, associated biological activity data, and underlying mechanisms of glycyrrhetinic acid and its derivatives. This review endeavors to systematically compile and organize glycyrrhetinic acid derivatives that have demonstrated outstanding biological activities over the preceding decade, delineating their molecular structures, biological effects, underlying mechanisms, and future prospects for assisting researchers in finding and designing novel glycyrrhetinic acid derivatives, foster the exploration of structure-activity relationships, and aid in the screening of potential candidate compounds.
Collapse
Affiliation(s)
- Liang Chen
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Jingwen Gong
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Xu Yong
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University Shanghai 200433 China
| | - Youbin Li
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Shuojin Wang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| |
Collapse
|
2
|
Liu Y, Li Y, Tian Y, Guo Y, Wei R, Huang X, Qian L, Liu S, Chen G, Che Z. Synthesis of novel 18 β-glycyrrhetinic acid sulfonate derivatives displaying significant anti-oomycete activity against Phytophthora capsici. Nat Prod Res 2023:1-9. [PMID: 37950734 DOI: 10.1080/14786419.2023.2280999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
Using 18β-glycyrrhetinic acid (GA) as the lead compound, fourteen GA sulphonate derivatives (3a-n) were prepared by modifying its C-3 OH group, and their structures were well confirmed by 1H NMR, 13C NMR, HRMS and melting points. Moreover, we screened the anti-oomycete activity of these compounds against Phytophthora capsici by using the mycelial growth rate method. Among the fourteen GA sulphonate derivatives evaluated, four compounds 3f, 3j, 3k and 3l exhibited more potent anti-oomycete activity than that of the positive control zoxamide (EC50 = 25.17 mg/L), and had the median effective concentration (EC50) values of 23.04, 16.16, 22.55, and 13.93 mg/L, respectively. Especially compound 3l showed the best anti-oomycete activity against P. capsici with EC50 value of 13.93 mg/L. Overall, the introduction of sulfonyloxy groups at the C-3 position of GA has a significant impact on its anti-oomycete activity, and the corresponding derivative activity varies significantly with different substituents R.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yan Li
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yuee Tian
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yihao Guo
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Ruxue Wei
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Xiaobo Huang
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Le Qian
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Shengming Liu
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Genqiang Chen
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Zhiping Che
- Department of Plant Protection, Laboratory of Pesticidal Design & Synthesis, College of Horticultrue and Plant Protection, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
3
|
Wang LY, Liu J, Bao KS, Zhu ZY. The structure modification with glucosamine of glycyrrhetinic acid extracted from Glycyrrhiza uralensis Fisch offal and mechanism of action based on network pharmacology and molecular docking against type II diabetes. Fitoterapia 2023; 171:105714. [PMID: 39492413 DOI: 10.1016/j.fitote.2023.105714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
In order to improve the solubility and hypoglycemic activity of glycyrrhetinic acid (GA), the active mechanism of action of new compounds was explored. A novel 2-(N-3-acetylglycyrrhetinoyl)-N-glucopyranosyl-2-acetamide (compound 9) was synthesized by adding glucosamine (GlcN) to the C-30 carboxyl group of GA, and the hypoglycemic activity mechanism of compound 9 was explored by network pharmacology and molecular docking. The results showed that the solubility of compound 9 was better than GA, and the α-glucosidase inhibitory effect of compound 9 (IC50 = 0.160 mmol/L) was better than GA (IC50 = 0.381 mmol/L). The HepG2 insulin resistance (HepG2-IR) model found that glucose consumption in insulin-resistant cells can increase with the help of GA and compound 9. Network pharmacology screened 268 targets of compound 9 and disease. The core genes in the protein interaction network are epidermal growth factor receptor (EGFR), phosphokinase (SRC), MAPK1, MMP2, mmp9, etc., which are involved in prostate cancer, blood lipid and atherosclerosis, peroxisome proliferation activation receptor (PPAR) signaling pathway, Th17 cell differentiation and other pathways.
Collapse
Affiliation(s)
- Liu-Ya Wang
- State Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jie Liu
- State Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Kai-Sheng Bao
- State Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhen-Yuan Zhu
- State Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
4
|
He JJ, Li T, Liu HW, Yang LL, Yang YH, Tao QQ, Zhou X, Wang PY, Yang S. Ion exchange pattern-based 18β-glycyrrhetinic acid containing pyridinium salts derivatives as novel antibacterial agents with low toxicity. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
5
|
Lince KC, DeMario VK, Yang GT, Tran RT, Nguyen DT, Sanderson JN, Pittman R, Sanchez RL. A Systematic Review of Second-Line Treatments in Antiviral Resistant Strains of HSV-1, HSV-2, and VZV. Cureus 2023; 15:e35958. [PMID: 37041924 PMCID: PMC10082683 DOI: 10.7759/cureus.35958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 03/11/2023] Open
Abstract
Drug-resistant variants of herpes simplex viruses (HSV) have been reported that are not effectively treated with first-line antiviral agents. The objective of this study was to evaluate available literature on the possible efficacy of second-line treatments in HSV and the use of second-line treatments in HSV strains that are resistant to first-line treatments. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a final search was conducted in six databases on November 5, 2021 for all relevant literature using terms related to antiviral resistance, herpes, and HSV. Eligible manuscripts were required to report the presence of an existing or proposed second-line treatment for HSV-1, HSV-2, or varicella zoster virus (VZV); have full-text English-language access; and potentially reduce the rate of antiviral resistance. Following screening, 137 articles were included in qualitative synthesis. Of the included studies, articles that examined the relationship between viral resistance to first-line treatments and potential second-line treatments in HSV were included. The Cochrane risk-of-bias tool for randomized trials was used to assess risk of bias. Due to the heterogeneity of study designs, a meta-analysis of the studies was not performed. The dates in which accepted studies were published spanned from 2015-2021. In terms of sample characteristics, the majority (72.26%) of studies used Vero cells. When looking at the viruses on which the interventions were tested, the majority (84.67%) used HSV-1, with (34.31%) of these studies reporting testing on resistant HSV strains. Regarding the effectiveness of the proposed interventions, 91.97% were effective as potential managements for resistant strains of HSV. Of the papers reviewed, nectin in 2.19% of the reviews had efficacy as a second-line treatments in HSV, amenamevir in 2.19%, methanol extract in 2.19%, monoclonal antibodies in 1.46%, arbidol in 1.46%, siRNA swarms in 1.46%, Cucumis melo sulfated pectin in 1.46%, and components from Olea europeae in 1.46%. In addition to this griffithsin in 1.46% was effective, Morus alba L. in 1.46%, using nucleosides in 1.46%, botryosphaeran in 1.46%, monoterpenes in 1.46%, almond skin extracts in 1.46%, bortezomib in 1.46%, flavonoid compounds in 1.46%, andessential oils were effective in 1.46%, but not effective in 0.73%. The available literature reviewed consistently supports the existence and potentiality of second-line treatments for HSV strains that are resistant to first-line treatments. Immunocompromised patients have been noted to be the population most often affected by drug-resistant variants of HSV. Subsequently, we found that HSV infections in this patient population are challenging to manage clinically effectively. The goal of this systematic review is to provide additional information to patients on the potentiality of second-line treatment in HSV strains resistant to first-line treatments, especially those who are immunocompromised. All patients, whether they are immunocompromised or not, deserve to have their infections clinically managed in a manner supported by comprehensive research. This review provides necessary information about treatment options for patients with resistant HSV infections and their providers.
Collapse
Affiliation(s)
- Kimberly C Lince
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Virgil K DeMario
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - George T Yang
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Rita T Tran
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Daniel T Nguyen
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Jacob N Sanderson
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Rachel Pittman
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Rebecca L Sanchez
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| |
Collapse
|
6
|
Sun M, Xin Q, Hou K, Qiu J, Wang L, Chao E, Su X, Zhang X, Chen S, Wang C. Production of 11-Oxo-β-Amyrin in Saccharomyces cerevisiae at High Efficiency by Fine-Tuning the Expression Ratio of CYP450:CPR. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3766-3776. [PMID: 36795896 DOI: 10.1021/acs.jafc.2c08261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The production of glycyrrhetinic acid (GA) and 11-oxo-β-amyrin, the major bioactive components in liquorice, was typically inhibited by P450 oxidation in Saccharomyces cerevisiae. This study focused on optimizing CYP88D6 oxidation by balancing its expression with cytochrome P450 oxidoreductase (CPR) for the efficient production of 11-oxo-β-amyrin in yeast. Results indicated that a high CPR:CYP88D6 expression ratio could decrease both 11-oxo-β-amyrin concentration and turnover ratio of β-amyrin to 11-oxo-β-amyrin, whereas a high CYP88D6:CPR expression ratio is beneficial for improving the catalytic activity of CYP88D6 and 11-oxo-β-amyrin production. Under such a scenario, 91.2% of β-amyrin was converted into 11-oxo-β-amyrin in the resulting S. cerevisiae Y321, and 11-oxo-β-amyrin production was further improved to 810.6 mg/L in fed-batch fermentation. Our study provides new insights into the expression of cytochrome P450 and CPR in maximizing the catalytic activity of P450s, which could guide the construction of cell factories in producing natural products.
Collapse
Affiliation(s)
- Mengchu Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Qi Xin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Kangxin Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- Department of Food Science, Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jie Qiu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Linmei Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Erkun Chao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Xinyao Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301607, P. R. China
| | - Xiuxin Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, P. R. China
| | - Caixia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| |
Collapse
|
7
|
Elso OG, Bivona AE, Cenizo R, Malchiodi EL, García Liñares G. Enzymatic synthesis of amlodipine amides and evaluation of their anti- Trypanosoma cruzi activity. Org Biomol Chem 2023; 21:1411-1421. [PMID: 36722938 DOI: 10.1039/d2ob02271k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Advancing with our project about the development of new antiparasitic agents, we have enzymatically synthesized a series of amides derived from amlodipine, a calcium channel blocker used as an antihypertensive drug. Through lipase-catalyzed acylation with different carboxylic acids, nineteen amlodipine derivatives were obtained, eighteen of which were new compounds. To optimize the reaction conditions, the influence of several reaction parameters was analyzed, finding different requisites for aliphatic carboxylic acids and phenylacetic acids. All synthesized compounds were evaluated as antiproliferative agents against Trypanosoma cruzi, the etiological agent of American trypanosomiasis (Chagas' disease). Some of them showed significant activity against the amastigote form of T. cruzi, the clinically relevant form of the parasite. Among synthesized compounds, the derivatives of myristic and linolenic acids showed higher efficacy and lower cytotoxicity. These results added to the advantages shown by the enzymatic methodology, such as mild reaction conditions and low environmental impact, making this approach a valuable way to synthesize these amlodipine derivatives with an application as promising antiparasitic agents.
Collapse
Affiliation(s)
- Orlando G Elso
- Laboratorio de Biocatálisis. Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA Buenos Aires, Argentina.
| | - Augusto E Bivona
- Instituto de Microbiología y Parasitología Médica (IMPaM), Universidad de Buenos Aires-CONICET, Paraguay 2155, piso 13, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires-CONICET, Junín 1113, piso 4, Buenos Aires, Argentina
| | - Rocío Cenizo
- Instituto de Microbiología y Parasitología Médica (IMPaM), Universidad de Buenos Aires-CONICET, Paraguay 2155, piso 13, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires-CONICET, Junín 1113, piso 4, Buenos Aires, Argentina
| | - Emilio L Malchiodi
- Instituto de Microbiología y Parasitología Médica (IMPaM), Universidad de Buenos Aires-CONICET, Paraguay 2155, piso 13, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires-CONICET, Junín 1113, piso 4, Buenos Aires, Argentina
| | - Guadalupe García Liñares
- Laboratorio de Biocatálisis. Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA Buenos Aires, Argentina.
| |
Collapse
|
8
|
Cai DS, Yang XY, Yang YQ, Gao F, Cheng XH, Zhao YJ, Qi R, Zhang YZ, Lu JH, Lin XY, Liu YJ, Xu B, Wang PL, Lei HM. Design and synthesis of novel anti-multidrug-resistant staphylococcus aureus derivatives of glycyrrhetinic acid by blocking arginine biosynthesis, metabolic and H 2S biogenesis. Bioorg Chem 2023; 131:106337. [PMID: 36603244 DOI: 10.1016/j.bioorg.2022.106337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
With the soaring number of multidrug-resistant bacteria, it is imperative to develop novel efficient antibacterial agents and discovery new antibacterial pathways. Herein, we designed and synthesized a series of structurally novel glycyrrhetinic acid (GA) derivatives against multidrug-resistant Staphylococcus aureus (MRSA). The in vitro antibacterial activity of these compounds was evaluated using the microbroth dilution method, agar plate coating experiments and real-time growth curves, respectively. Most of the target derivatives showed moderate antibacterial activity against Staphylococcus aureus (S. aureus) and MRSA (MIC = 3.125-25 μM), but inactivity against Escherichia coli (E. Coli) and Pseudomonas aeruginosa (P. aeruginosa) (MIC > 200 μM). Among them, compound 11 had the strongest antibacterial activity against MRSA, with an MIC value of 3.125 μM, which was 32 times and 64 times than the first-line antibiotics penicillin and norfloxacin, respectively. Additionally, transcriptomic (RNA-seq) and quantitative polymerase chain reaction (qPCR) analysis revealed that the antibacterial mechanism of compound 11 was through blocking the arginine biosynthesis and metabolic and the H2S biogenesis. Importantly, compound 11 was confirmed to have good biocompatibility through the in vitro hemolysis tests, cytotoxicity assays and the in vivo quail chicken chorioallantoic membrane (qCAM) experiments. Current study provided new potential antibacterial candidates from glycyrrhetinic acid derivatives for clinical treatment of MRSA infections.
Collapse
Affiliation(s)
- De-Sheng Cai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Xiao-Yun Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yu-Qin Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Xue-Hao Cheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Ya-Juan Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Rui Qi
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yao-Zhi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Ji-Hui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Xiao-Yu Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yi-Jing Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Peng-Long Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Hai-Min Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| |
Collapse
|
9
|
García F, Musikant D, Escalona JL, Edreira MM, Liñares GG. Lipase-Catalyzed Synthesis and Biological Evaluation of N-Picolineamides as Trypanosoma cruzi Antiproliferative Agents. ACS Med Chem Lett 2023; 14:59-65. [PMID: 36655123 PMCID: PMC9841590 DOI: 10.1021/acsmedchemlett.2c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
In our search for new safe antiparasitic agents, an enzymatic pathway was applied to synthesize a series of N-pyridinylmethyl amides derived from structurally different carboxylic acids. Thirty derivatives, including 11 new compounds, were prepared through lipase-catalyzed acylation in excellent yields. In order to optimize the synthetic methodology, the impact of different reaction parameters was analyzed. Some compounds were evaluated as antiproliferative agents against Trypanosoma cruzi, the parasite responsible for American trypanosomiasis (Chagas' disease). Some of them showed significant activity as parasite proliferation inhibitors. Amides derived from 2-aminopicoline and stearic and elaidic acids were as potent as nifurtimox against the amastigote form of T. cruzi, the clinically relevant form of the parasite. Even more, a powerful synergism between nifurtimox and N-(pyridin-2-ylmethyl)stereamide was observed, almost completely inhibiting the proliferation of the parasite. Besides, the obtained compounds showed no toxicity in Vero cells, making them excellent potential candidates as lead drugs.
Collapse
Affiliation(s)
- Fabricio
Freije García
- Laboratorio
de Biocatálisis, Departamento de Química Orgánica
y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA Buenos Aires, Argentina
| | - Daniel Musikant
- Laboratorio
de Biología Molecular de Trypanosomas, Departamento de Química
Biológica e IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Ciudad Universitaria, Pabellón 2, piso 4, C1428EGA Buenos Aires, Argentina
| | - José L. Escalona
- Laboratorio
de Biología Molecular de Trypanosomas, Departamento de Química
Biológica e IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Ciudad Universitaria, Pabellón 2, piso 4, C1428EGA Buenos Aires, Argentina
| | - Martín M. Edreira
- Laboratorio
de Biología Molecular de Trypanosomas, Departamento de Química
Biológica e IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Ciudad Universitaria, Pabellón 2, piso 4, C1428EGA Buenos Aires, Argentina
| | - Guadalupe García Liñares
- Laboratorio
de Biocatálisis, Departamento de Química Orgánica
y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
10
|
Ni Q, Gao Y, Yang X, Zhang Q, Guo B, Han J, Chen S. Analysis of the network pharmacology and the structure-activity relationship of glycyrrhizic acid and glycyrrhetinic acid. Front Pharmacol 2022; 13:1001018. [PMID: 36313350 PMCID: PMC9606671 DOI: 10.3389/fphar.2022.1001018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Licorice, a herbal product derived from the root of Glycyrrhiza species, has been used as a sweetening agent and traditional herbal medicine for hundreds of years. Glycyrrhizic acid (GL) and glycyrrhetinic acid (GA) are the most important active ingredients in licorice. Both GL and GA have pharmacological effects against tumors, inflammation, viral infection, liver diseases, neurological diseases, and metabolic diseases. However, they also exhibit differences. KEGG analysis indicated that licorice is involved in neuroactive ligand‒receptor interactions, while 18β-GA is mostly involved in arrhythmogenic right ventricular cardiomyopathy. In this article, we comprehensively review the therapeutic potential of GL and GA by focusing on their pharmacological effects and working mechanisms. We systemically examine the structure-activity relationship of GL, GA and their isomers. Based on the various pharmacological activities of GL, GA and their isomers, we propose further development of structural derivatives of GA after chemical structure modification, with less cytotoxicity but higher targeting specificity. More research is needed on the clinical applications of licorice and its active ingredients.
Collapse
Affiliation(s)
- Qingqiang Ni
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affifiliated to Shandong First Medical University, Jinan, Shandong, China
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuxuan Gao
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiuzhen Yang
- Department of Basic Research, Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Qingmeng Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Baojian Guo
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, Guangdong, China
| | - Jinxiang Han
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- *Correspondence: Jinxiang Han, ; Shaoru Chen,
| | - Shaoru Chen
- Department of Basic Research, Guangzhou Laboratory, Guangzhou, Guangdong, China
- *Correspondence: Jinxiang Han, ; Shaoru Chen,
| |
Collapse
|
11
|
Liang S, Ma X, Li M, Yi Y, Gao Q, Zhang Y, Zhang L, Zhou D, Xiao S. Novel β-Cyclodextrin-Based Heptavalent Glycyrrhetinic Acid Conjugates: Synthesis, Characterization, and Anti-Influenza Activity. Front Chem 2022; 10:836955. [PMID: 35494649 PMCID: PMC9039011 DOI: 10.3389/fchem.2022.836955] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
In our continuing efforts toward the design of novel pentacyclic triterpene derivatives as potential anti-influenza virus entry inhibitors, a series of homogeneous heptavalent glycyrrhetinic acid derivatives based on β-cyclodextrin scaffold were designed and synthesized by click chemistry. The structure was unambiguously characterized by NMR, IR, and MALDI-TOF-MS measurements. Seven conjugates showed sufficient inhibitory activity against influenza virus infection based on the cytopathic effect reduction assay with IC50 values in the micromolar range. The interactions of conjugate 37, the most potent compound (IC50 = 2.86 μM, CC50 > 100 μM), with the influenza virus were investigated using the hemagglutination inhibition assay. Moreover, the surface plasmon resonance assay further confirmed that compound 37 bound to the influenza HA protein specifically with a dissociation constant of 5.15 × 10−7 M. Our results suggest the promising role of β-cyclodextrin as a scaffold for preparing a variety of multivalent compounds as influenza entry inhibitors.
Collapse
Affiliation(s)
- Shuobin Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xinyuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Man Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yanliang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qianqian Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yongmin Zhang
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Paris, France
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- *Correspondence: Sulong Xiao,
| |
Collapse
|
12
|
Liu Y, Sheng R, Fan J, Guo R. A Mini-Review on Structure-Activity Relationships of Glycyrrhetinic Acid Derivatives with Diverse Bioactivities. Mini Rev Med Chem 2022; 22:2024-2066. [PMID: 35081889 DOI: 10.2174/1389557522666220126093033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Pentacyclic triterpenoids, consisting of six isoprene units, are a kind of natural active substance. At present, numerous pentacyclic triterpene have been observed and classified into four subgroups of oleanane, ursane, lupane, and xylene on the basis of the carbon skeleton. Among them, oleanane is the most popular due to its rich backbone and diverse bioactivities. 18β-Glycyrrhetinic acid (GA), an oleanane-type pentacyclic triterpene isolated from licorice roots, possesses diverse bioactivities including antitumor, anti-inflammatory, antiviral, antimicrobial, enzyme inhibitor, hepatoprotective and so on. It has received more attention in medicinal chemistry due to the advantages of easy-to-access and rich bioactivity. Thus, numerous novel lead compounds were synthesized using GA as a scaffold. Herein, we summarize the structure-activity relationship and synthetic methodologies of GA derivatives from 2010 to 2020 as well as the most active GA derivatives. Finally, we anticipate that this review can benefit future research on structural modifications of GA to enhance bioactivity and provide an example for developing pentacyclic triterpene-based novel drugs.
Collapse
Affiliation(s)
- Yuebin Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ruilong Sheng
- CQM - Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9000-390 Funchal, Portugal
| | - Junting Fan
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ruihua Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| |
Collapse
|
13
|
Zígolo MA, Goytia MR, Poma HR, Rajal VB, Irazusta VP. Virtual screening of plant-derived compounds against SARS-CoV-2 viral proteins using computational tools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146400. [PMID: 33794459 PMCID: PMC7967396 DOI: 10.1016/j.scitotenv.2021.146400] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 05/08/2023]
Abstract
The new SARS-CoV-2, responsible for the COVID-19 pandemic, has been threatening public health worldwide for more than a year. The aim of this work was to evaluate compounds of natural origin, mainly from medicinal plants, as potential SARS-CoV-2 inhibitors through docking studies. The viral spike (S) glycoprotein and the main protease Mpro, involved in the recognition of virus by host cells and in viral replication, respectively, were the main molecular targets in this study. Molecular docking was performed using AutoDock, which allowed us to select the plant actives with the highest affinity towards the viral targets and to identify the interaction molecular sites with the SARS-CoV2 proteins. The best energy binding values for S protein were, in kcal/mol: -19.22 for glycyrrhizin, -17.84 for gitoxin, -12.05 for dicumarol, -10.75 for diosgenin, and -8.12 for delphinidin. For Mpro were, in kcal/mol: -9.36 for spirostan, -8.75 for N-(3-acetylglycyrrhetinoyl)-2-amino-propanol, -8.41 for α-amyrin, -8.35 for oleanane, -8.11 for taraxasterol, and -8.03 for glycyrrhetinic acid. In addition, the synthetic drugs umifenovir, chloroquine, and hydroxychloroquine were used as controls for S protein, while atazanavir and nelfinavir were used for Mpro. Key hydrogen bonds and hydrophobic interactions between natural compounds and the respective viral proteins were identified, allowing us to explain the great affinity obtained in those compounds with the lowest binding energies. These results suggest that these natural compounds could potentially be useful as drugs to be experimentally evaluated against COVID-19.
Collapse
Affiliation(s)
- María Antonela Zígolo
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina
| | - Matías Rivero Goytia
- Silentium Apps, Salta, Argentina; Facultad de Economía y Administración, Universidad Católica de Salta (UCASAL), Salta, Argentina
| | - Hugo Ramiro Poma
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ingeniería, UNSa, Salta, Argentina; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
| | - Verónica Patricia Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina
| |
Collapse
|
14
|
|
15
|
Xiang M, Song YL, Ji J, Zhou X, Liu LW, Wang PY, Wu ZB, Li Z, Yang S. Synthesis of novel 18β-glycyrrhetinic piperazine amides displaying significant in vitro and in vivo antibacterial activities against intractable plant bacterial diseases. PEST MANAGEMENT SCIENCE 2020; 76:2959-2971. [PMID: 32246577 DOI: 10.1002/ps.5841] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/23/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The limited amount of agrochemicals targeting plant bacterial diseases has motivated us to study innovative antibacterial surrogates with fresh modes of action. Notably, fabrication of violent apoptosis inducers to control the reproduction of pathogenic bacteria should be a feasible way to control plant bacterial diseases. To achieve this aim, we constructed a series of novel 18β-glycyrrhetinic piperazine amides based on the natural bioactive ingredient 18β-glycyrrhetinic acid to evaluate the in vitro and in vivo antibacterial activity and induced apoptosis behaviors on tested pathogens. RESULTS Screening results suggested that these designed compounds were extremely bioactive against two notorious pathogens, Xanthomonas oryzae pv. oryzae and X. axonopodis pv. citri. This conclusion was highlighted by the biological effects of compounds A3 and B1 , affording the related EC50 values of 2.28 and 0.93 μg mL-1 . In vivo trials confirmed the prospective application for managing rice bacterial blight disease with control efficiency within 50.57-53.70% at 200 μg mL-1 . In particular, target compounds could induce the generation of excessive reactive oxygen species (ROS) in tested pathogens, subsequently leading to a strong apoptotic effect at a very low drug concentration (≤ 10 μg mL-1 ). This finding was consistent with the observed ROS-enhanced fluorescent images and morphological changes of pathogens from scanning electron microscopy patterns. CONCLUSION Given these features, we anticipate that these novel piperazine-tailored 18β-glycyrrhetinic hybrids can provide an perceptible insight for fighting bacterial infections by activation of the apoptosis mechanism. Novel 18β-glycyrrhetinic piperazine amides were reported to have excellent antibacterial efficacy toward phytopathogens Xanthomonas oryzae pv. oryzae and X. axonopodis pv. citri. A possible apoptosis mechanism was proposed from the remarkable apoptotic behaviors triggered by target compounds. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meng Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Ying-Lian Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jin Ji
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhi-Bing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhong Li
- College of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- College of Pharmacy, East China University of Science & Technology, Shanghai, China
| |
Collapse
|
16
|
Zígolo MA, Irazusta VP, Rajal VB. Correlation between initial biodegradability determined by docking studies and structure of alkylbenzene sulfonates: A new tool for intelligent design of environmentally friendly anionic surfactants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138731. [PMID: 32339835 DOI: 10.1016/j.scitotenv.2020.138731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Gray water constitutes an important fraction of total wastewater. Some of the most problematic compounds in gray water are the anionic surfactants used as an ingredient for domestic and industrial soaps and detergents. The alkylbenzene sulfonates used in commercially available formula are highly complex mixtures of linear (LAS) and branched (BAS) molecules. LAS are classified generally as biodegradable, although their widespread use generates accumulation in the environment. Docking tools, widely used in recent years in the bioremediation field, allow molecular modeling of the ligand-enzyme interaction, which is key to understanding and evaluating the possibility of biodegradation. In this work, molecular details that allow us to establish a biodegradation pattern for some alkylbenzene sulfonates were elucidated. Two hydrogen bonds, key for the anchorage of surfactants to the monooxygenase active site involved in the initial biodegradation, were found. These bonds determine the way surfactants locate in the hydrophobic pocket of the enzyme affecting the biodegradation rate in a structurally dependent manner. For C10 to C12 linear isomers, the degradation rate increased together with the length of the hydrocarbon chain. For C13 and C14 isomers, steric difficulties to accommodate the surfactant molecule in the catalytic site were observed. For branched chain isomers, little or no biodegradation was found. In addition, biodegradation was lower in mixtures than for the pure isomers. These results will allow an intelligent design of this family of anionic surfactants to attenuate their contaminating effects in waters and soils. This study constitutes, to the best of our knowledge, a novel contribution towards the design of environmentally friendly surfactants with higher probabilities of being biodegraded to complete mineralization.
Collapse
Affiliation(s)
- María Antonela Zígolo
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina
| | - Verónica Patricia Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400 Salta, Argentina; Facultad de Ingeniería, UNSa, Salta, Argentina; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
17
|
Zheng J, Xu Y, Khan A, Wang S, Li H, Sun N. In vitro Screening of Traditional Chinese Medicines Compounds Derived with Anti-encephalomyocarditis Virus Activities. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0354-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Zheng QX, Wang R, Xu Y, He CX, Zhao CY, Wang ZF, Zhang R, Dehaen W, Li HJ, Huai QY. Design, Preparation and Studies Regarding Cytotoxic Properties of Glycyrrhetinic Acid Derivatives. Biol Pharm Bull 2020; 43:102-109. [DOI: 10.1248/bpb.b19-00615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Rui Wang
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven
| | - Yan Xu
- Marine College, Shandong University
| | | | | | | | | | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven
| | - Hui-Jing Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai
| | | |
Collapse
|
19
|
Liu CM, Huang JY, Sheng LX, Wen XA, Cheng KG. Synthesis and antitumor activity of fluorouracil - oleanolic acid/ursolic acid/glycyrrhetinic acid conjugates. MEDCHEMCOMM 2019; 10:1370-1378. [PMID: 31673307 PMCID: PMC6786008 DOI: 10.1039/c9md00246d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/09/2019] [Indexed: 12/21/2022]
Abstract
Due to the obvious adverse effects of 5-fluorouracil that limit its clinical usefulness and considering the diverse biological activities of pentacyclic triterpenes, twelve pentacyclic triterpene-5-fluorouracil conjugates were synthesized and their antitumor activities were evaluated. The results indicated that all the single substitution targeted hybrids (7a-12a) possessed much better antiproliferative activities than the double substitution targeted hybrids (7b-12b). Hybrid 12a exhibited good antiproliferative activities against all the tested MDR cell lines. Furthermore, it was revealed that 12a could induce intracellular calcium influx, the generation of ROS, arrest the cell proliferation at the G1 phase, and activate the apoptotic signaling caspase-8, which eventually activates the apoptotic effector caspase-3 and causes the later nuclear apoptosis.
Collapse
Affiliation(s)
- Chun-Mei Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy of Guangxi Normal University , Guilin 541004 , PR China . ; ; Tel: +86 0773 2120958
| | - Jia-Yan Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy of Guangxi Normal University , Guilin 541004 , PR China . ; ; Tel: +86 0773 2120958
| | - Li-Xin Sheng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy of Guangxi Normal University , Guilin 541004 , PR China . ; ; Tel: +86 0773 2120958
| | - Xiao-An Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and , State Key Laboratory of Natural Medicines , Center of Drug Discovery , China Pharmaceutical University , 24 Tongjia Xiang , Nanjing 210009 , China
| | - Ke-Guang Cheng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy of Guangxi Normal University , Guilin 541004 , PR China . ; ; Tel: +86 0773 2120958
| |
Collapse
|
20
|
Wang R, Yang W, Fan Y, Dehaen W, Li Y, Li H, Wang W, Zheng Q, Huai Q. Design and synthesis of the novel oleanolic acid-cinnamic acid ester derivatives and glycyrrhetinic acid-cinnamic acid ester derivatives with cytotoxic properties. Bioorg Chem 2019; 88:102951. [PMID: 31054427 DOI: 10.1016/j.bioorg.2019.102951] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
Oleanolic acid (OA) and glycyrrhetinic acid (GA) are natural products with anticancer effects. Cinnamic acid (CA) and its derivatives also exhibited certain anticancer activity. In order to improve the anticancer activity of OA and GA, we designed and synthesized a series of novel OA-CA ester derivatives and GA-CA ester derivatives by using molecular hybridization approach. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was used to assess their in vitro cytotoxicity on three cell lines (HeLa (cervical cancer), MCF-7 (breast cancer) and L-O2 (a normal hepatic cell)). Among the evaluated compounds, 3o presented the strongest selective cytotoxicity on HeLa cells (IC50 = 1.35 μM) and showed no inhibitory activity against MCF-7 cells (IC50 > 100 μM) and L-O2 cells (IC50 > 100 μM), and 3e presented the strongest selective inhibition of the MCF-7 cells (IC50 = 1.79 μM). What's more, compound 2d also showed very strong selective inhibitory activity against HeLa cells (IC50 = 1.55 μM). The further research using Hoechst 33342, AO/EB dual-staining, flow cytometric analysis and DCFH-DA fluorescent dye staining assay presented that 2d and 3o could induce HeLa cells apoptosis and autophagy.
Collapse
Affiliation(s)
- Rui Wang
- Marine College, Shandong University, Weihai 264209, China; Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Wei Yang
- Marine College, Shandong University, Weihai 264209, China
| | - Yiqing Fan
- Marine College, Shandong University, Weihai 264209, China
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Yang Li
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Liaocheng, China
| | - Huijing Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Wei Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Qingxuan Zheng
- Marine College, Shandong University, Weihai 264209, China
| | - Qiyong Huai
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
21
|
Liang S, Li M, Yu X, Jin H, Zhang Y, Zhang L, Zhou D, Xiao S. Synthesis and structure-activity relationship studies of water-soluble β-cyclodextrin-glycyrrhetinic acid conjugates as potential anti-influenza virus agents. Eur J Med Chem 2019; 166:328-338. [PMID: 30731401 PMCID: PMC7115653 DOI: 10.1016/j.ejmech.2019.01.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/24/2022]
Abstract
Glycyrrhetinic acid (GA) is a major constituent of the herb Glycyrrhiza glabra, and many of its derivatives demonstrate a broad spectrum of antiviral activities. In the current study, 18 water-soluble β-cyclodextrin (CD)-GA conjugates, in which GA was covalently coupled to the primary face of β-CD using 1,2,3-triazole moiety along with varying lengths of linker, were synthesized via copper-catalyzed azide-alkyl cycloaddition reaction. Benefited from the attached β-CD moiety, all these conjugates showed lower hydrophobicity (AlogP) compared with their parent compound GA. With the exception of per-O-methylated β-CD-GA conjugate (35), all other conjugates showed no significant cytotoxicity to MDCK cells, and these conjugates were then screened against A/WSN/33 (H1N1) virus using the cytopathic effect assay. The preliminary results indicated that six conjugates showed promising antiviral activity, and the C-3 and C-30 of GA could tolerate some modifications. Our findings suggested that GA could be used as a lead compound for the development of potential anti-influenza virus agents.
Collapse
Affiliation(s)
- Shuobin Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Man Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaojuan Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yongmin Zhang
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, 4 place Jussieu, 75005, Paris, France
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
22
|
Tang XL, Suo H, Zheng RC, Zheng YG. An efficient colorimetric high-throughput screening method for synthetic activity of tyrosine phenol-lyase. Anal Biochem 2018; 560:7-11. [DOI: 10.1016/j.ab.2018.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/21/2018] [Accepted: 08/29/2018] [Indexed: 12/23/2022]
|
23
|
Chanquia SN, Larregui F, Puente V, Labriola C, Lombardo E, García Liñares G. Synthesis and biological evaluation of new quinoline derivatives as antileishmanial and antitrypanosomal agents. Bioorg Chem 2018; 83:526-534. [PMID: 30469145 DOI: 10.1016/j.bioorg.2018.10.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 10/28/2022]
Abstract
As a part of our project aimed at developing new safe chemotherapeutic agents against tropical diseases, a series of aryl derivatives of 2- and 3-aminoquinoline, some of them new compounds, was designed, synthesized, and evaluated as antiproliferative agents against Trypanosoma cruzi, the parasite responsible for American trypanosomiasis (Chagas' disease), and Leishmania mexicana, the etiological agent of Leishmaniasis. Some of them showed a remarkable activity as parasite growth inhibitors. Fluorine-containing derivatives 11b and 11c were more than twice more potent than geneticin against intracellular promastigote form of Leishmania mexicana exhibiting both IC50 values of 41.9 μM. The IC50 values corresponding to fluorine and chlorine derivatives 11b-d were in the same order than benznidazole against epimastigote form. These drugs are interesting examples of effective antiparasitic agents with outstanding potential not only as lead drugs but also to be used for further in vivo studies. In addition, the obtained compounds showed no toxicity in Vero cells, which makes them good candidates to control tropical diseases. Regarding the probable mode of action, assayed quinoline derivatives interacted with hemin, inhibiting its degradation and generating oxidative stress that is not counteracted by the antioxidant defense system of the parasite.
Collapse
Affiliation(s)
- Santiago N Chanquia
- Laboratorio de Biocatálisis. Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA Buenos Aires, Argentina
| | - Facundo Larregui
- Laboratorio de Biocatálisis. Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA Buenos Aires, Argentina
| | - Vanesa Puente
- Centro de Investigaciones sobre Porfirias y Porfirinas (CIPYP, UBA-CONICET), Hospital de Clínicas José de San Martín, Avenida Córdoba 2351, 1120 Buenos Aires, Argentina
| | - Carlos Labriola
- Instituto de Investigaciones Bioquímicas, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Elisa Lombardo
- Centro de Investigaciones sobre Porfirias y Porfirinas (CIPYP, UBA-CONICET), Hospital de Clínicas José de San Martín, Avenida Córdoba 2351, 1120 Buenos Aires, Argentina.
| | - Guadalupe García Liñares
- Laboratorio de Biocatálisis. Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA Buenos Aires, Argentina.
| |
Collapse
|
24
|
Process development for efficient biosynthesis of L-DOPA with recombinant Escherichia coli harboring tyrosine phenol lyase from Fusobacterium nucleatum. Bioprocess Biosyst Eng 2018; 41:1347-1354. [PMID: 29869726 DOI: 10.1007/s00449-018-1962-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
The tyrosine phenol lyase (TPL) catalyzed synthesis of L-DOPA was regarded as one of the most economic route for L-DOPA synthesis. In our previous study, a novel TPL from Fusobacterium nucleatum (Fn-TPL) was exploited for efficient biosynthesis of L-DOPA. However, the catalytic efficiency decreased when the reaction system expanded from 100 mL to 1 L. As such, the bioprocess for scale-up production of L-DOPA was developed in this study. To increase the stability of substrate and product, as well as decrease the by-product formation, the optimum temperature and pH were determined to be 15 °C and pH 8.0, respectively. The initial concentration of pyrocatechol, pyruvate and ammonium acetate was fixed at 8, 5 and 77 g/L and a fed-batch approach was applied with sodium pyruvate, pyrocatechol and ammonium acetate fed in a concentration of 5, 5 and 3.5 g/L, respectively. In addition, L-DOPA crystals were exogenously added to inhibit cell encapsulation by the precipitated product. The final L-DOPA concentration reached higher than 120 g/L with pyrocatechol conversion more than 96% in a 15-L stirred tank, demonstrating the great potential of Fn-TPL for industrial production of L-DOPA.
Collapse
|