1
|
Santos MB, de Azevedo Teotônio Cavalcanti M, de Medeiros E Silva YMS, Dos Santos Nascimento IJ, de Moura RO. Overview of the New Bioactive Heterocycles as Targeting Topoisomerase Inhibitors Useful Against Colon Cancer. Anticancer Agents Med Chem 2024; 24:236-262. [PMID: 38038012 DOI: 10.2174/0118715206269722231121173311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer globally, with high mortality. Metastatic CRC is incurable in most cases, and multiple drug therapy can increase patients' life expectancy by 2 to 3 years. Efforts are being made to understand the relationship between topoisomerase enzymes and colorectal cancer. Some studies have shown that higher expression of these enzymes is correlated to a poor prognosis for this type of cancer. One of the primary drugs used in the treatment of CRC is Irinotecan, which can be used in monotherapy or, more commonly, in therapeutic schemes such as FOLFIRI (Fluorouracil, Leucovorin, and Irinotecan) and CAPIRI (Capecitabine and Irinotecan). Like Camptothecin, Irinotecan and other compounds have a mechanism of action based on the formation of a ternary complex with topoisomerase I and DNA providing damage to it, therefore leading to cell death. Thus, this review focused on the principal works published in the last ten years that demonstrate a correlation between the inhibition of different isoforms of topoisomerase and in vitro cytotoxic activity against CRC by natural products, semisynthetic and synthetic compounds of pyridine, quinoline, acridine, imidazoles, indoles, and metal complexes. The results revealed that natural compounds, semisynthetic and synthetic derivatives showed potential in vitro cytotoxicity against several colon cancer cell lines, and this activity was often accompanied by the ability to inhibit both isoforms of topoisomerase (I and II), highlighting that these enzymes can be promising targets for the development of new chemotherapy against CRC. Pyridine analogs were considered the most promising for this study, while the evaluation of the real potential of natural products was limited by the lack of information in their work. Moreover, the complexes, although promising, presented as the main limitation the lack of selectivity.
Collapse
Affiliation(s)
- Mirelly Barbosa Santos
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Misael de Azevedo Teotônio Cavalcanti
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Yvnni Maria Sales de Medeiros E Silva
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Igor José Dos Santos Nascimento
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Departament of Pharmacy, Cesmac University Center, Maceió, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
2
|
Kumar KS, Robert AR, Kerru N, Maddila S. A novel, swift, and effective green synthesis of morpholino-pyridine analogues in microwave irradiation conditions. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
3
|
Discovery of a 2,4-diphenyl-5,6-dihydrobenzo(h)quinolin-8-amine derivative as a novel DNA intercalating topoisomerase IIα poison. Eur J Med Chem 2021; 226:113860. [PMID: 34597897 DOI: 10.1016/j.ejmech.2021.113860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/04/2021] [Accepted: 09/17/2021] [Indexed: 12/22/2022]
Abstract
Several anticancer agents have been developed and innovative approaches have been made toward cancer type-specific medicines for cancer treatment. As a continuous effort to develop potential chemotherapeutic agents, a novel series of 2,4-diphenyl-5,6-dihydrobenzo(h)quinolin-8-amines containing amino groups, hydroxyphenyl and fluorine functionalities were designed and synthesized. The compounds were evaluated for topo IIα inhibitory and cytotoxicity against HCT15, and HeLa human cancer cell lines. Among synthesized thirty compounds, the majority exhibited strong topo IIα inhibition and anti-proliferation against HCT15 colorectal adenocarcinoma cell line. The structure-activity relationship study revealed that compounds with -CF3 and -OCF3 substituents at 4- position and 3' or 4'-hydroxyphenyl at 2-position attached to the central pyridine ring displayed potent topo IIα and anti-proliferative activity in colorectal and cervix cancer cell line. In vitro studies provided the evidence that compounds 16, 19, 22, and 28 possess excellent topo IIα inhibition and antiproliferative activity. For a better understanding, topo IIα cleavage complex, EtBr displacement, KI quenching assays and molecular docking of compound 19 was performed and the results revealed the mode of action as a DNA intercalative topo IIα poison inhibitor. The results obtained from this study provide insight into the DNA binding mechanism of 2,4-diphenyl-5,6-dihydrobenzo(h)quinolin-8-amines and alteration in topo IIα inhibitory and antiproliferative activity with modifications in the rigid structure.
Collapse
|
4
|
Shabalin DA. Recent advances and future challenges in the synthesis of 2,4,6-triarylpyridines. Org Biomol Chem 2021; 19:8184-8204. [PMID: 34499071 DOI: 10.1039/d1ob01310f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
2,4,6-Triarylpyridines are key building blocks to access functional molecules that are used in the design of advanced materials, metal-organic frameworks, supramolecules, reactive chemical intermediates and drugs. A number of synthetic protocols to construct this heterocyclic scaffold have been developed to date, the most recent of which (2015-present) are included and discussed in the present review. An emphasis has been placed on the utility of each synthetic approach in view of the scope of aryl/hetaryl substituents, limitations and an outlook of each method to be used in applied sciences.
Collapse
Affiliation(s)
- Dmitrii A Shabalin
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation.
| |
Collapse
|
5
|
Jeon KH, Shrestha A, Jang HJ, Kim JA, Sheen N, Seo M, Lee ES, Kwon Y. Anticancer Activity of Indeno[1,2-b]-Pyridinol Derivative as a New DNA Minor Groove Binding Catalytic Inhibitor of Topoisomerase IIα. Biomol Ther (Seoul) 2021; 29:562-570. [PMID: 34011695 PMCID: PMC8411023 DOI: 10.4062/biomolther.2020.231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 11/21/2022] Open
Abstract
Topoisomerase IIα has been a representative anti-cancer target for decades thanks to its functional necessity in highly proliferative cancer cells. As type of topoisomerase IIα targeting drugs, topoisomerase II poisons are frequently in clinical usage. However, topoisomerase II poisons result in crucial consequences resulted from mechanistically induced DNA toxicity. For this reason, it is needed to develop catalytic inhibitors of topoisomerase IIα through the alternative mechanism of enzymatic regulation. As a catalytic inhibitor of topoisomerase IIα, AK-I-191 was previously reported for its enzyme inhibitory activity. In this study, we clarified the mechanism of AK-I-191 and conducted various types of spectroscopic and biological evaluations for deeper understanding of its mechanism of action. Conclusively, AK-I-191 represented potent topoisomerase IIα inhibitory activity through binding to minor groove of DNA double helix and showed synergistic effects with tamoxifen in antiproliferative activity.
Collapse
Affiliation(s)
- Kyung-Hwa Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Aarajana Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hae Jin Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jeong-Ahn Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Naeun Sheen
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minjung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eung-Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
6
|
Khan E. Pyridine Derivatives as Biologically Active Precursors; Organics and Selected Coordination Complexes. ChemistrySelect 2021. [DOI: 10.1002/slct.202100332] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ezzat Khan
- Department of Chemistry University of Malakand, Chakdara 18800, Lower Dir Khyber Pakhtunkhwa Pakistan
- Department of Chemistry, College of Science University of Bahrain Sakhir 32038 Bahrain
| |
Collapse
|
7
|
Shabalin DA, Dvorko MY, Schmidt EY, Trofimov BA. Regiocontrolled synthesis of 2,4,6-triarylpyridines from methyl ketones, electron-deficient acetylenes and ammonium acetate. Org Biomol Chem 2021; 19:2703-2715. [PMID: 33667288 DOI: 10.1039/d1ob00193k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel one-pot two-step approach for the synthesis of 2,4,6-triarylpyridines via t-BuOK/DMSO-promoted C-vinylation of a variety of methyl ketones with electron-deficient acetylenes (alkynones) followed by a cyclization of the in situ generated unsaturated 1,5-dicarbonyl species with ammonium acetate has been developed. This approach possesses competitive advantages such as high regioselectivity, available starting materials and the absence of transition-metal catalysts, oxidants and undesirable byproducts. A wide synthetic utility of the developed approach was demonstrated by the synthesis of trisubstituted, tetrasubstituted and fused pyridines.
Collapse
Affiliation(s)
- Dmitrii A Shabalin
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation.
| | | | | | | |
Collapse
|
8
|
Baglini E, Salerno S, Barresi E, Robello M, Da Settimo F, Taliani S, Marini AM. Multiple Topoisomerase I (TopoI), Topoisomerase II (TopoII) and Tyrosyl-DNA Phosphodiesterase (TDP) inhibitors in the development of anticancer drugs. Eur J Pharm Sci 2021; 156:105594. [DOI: 10.1016/j.ejps.2020.105594] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
|
9
|
Li M, Wang T, Wang C. Multicomponent Reaction of Pyridinium Salts,
β
‐Nitrostyrenes and Ammonium Acetate under the DBU/Acetic Acid System: Access to 2,4,6‐Triarylpyridine Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202000387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingshuang Li
- School of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Ting Wang
- School of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| |
Collapse
|
10
|
Batalin S, Golikova M, Khrustaleva A, Pchelintseva N. PEG-400 assisted Kröhnke synthesis of 2-(2-hydroxyphenyl)-4-arylpyridines annulated by C 5-C 6 cycles with substituted benzylidene group. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2019.1706182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sergey Batalin
- Department of Organic and Bioorganic Chemistry, Institute of Chemistry, Saratov National Research State University named after N. G. Chernyshevsky, Saratov, Russia
| | - Margarita Golikova
- Department of Organic and Bioorganic Chemistry, Institute of Chemistry, Saratov National Research State University named after N. G. Chernyshevsky, Saratov, Russia
| | - Alexandra Khrustaleva
- Department of Organic and Bioorganic Chemistry, Institute of Chemistry, Saratov National Research State University named after N. G. Chernyshevsky, Saratov, Russia
| | - Nina Pchelintseva
- Department of Organic and Bioorganic Chemistry, Institute of Chemistry, Saratov National Research State University named after N. G. Chernyshevsky, Saratov, Russia
| |
Collapse
|
11
|
An efficient method for the synthesis of new derivatives of 2,4,6-triarylpyridines as cytotoxic agents. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04025-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Kadayat TM, Park S, Shrestha A, Jo H, Hwang SY, Katila P, Shrestha R, Nepal MR, Noh K, Kim SK, Koh WS, Kim KS, Jeon YH, Jeong TC, Kwon Y, Lee ES. Discovery and Biological Evaluations of Halogenated 2,4-Diphenyl Indeno[1,2- b]pyridinol Derivatives as Potent Topoisomerase IIα-Targeted Chemotherapeutic Agents for Breast Cancer. J Med Chem 2019; 62:8194-8234. [PMID: 31398033 DOI: 10.1021/acs.jmedchem.9b00970] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the aim of developing new effective topoisomerase IIα-targeted anticancer agents, we synthesized a series of hydroxy- and halogenated 2,4-diphenyl indeno[1,2-b]pyridinols using a microwave-assisted single step synthetic method and investigated structure-activity relationships. The majority of compounds with chlorophenyl group at 2-position and phenol group at the 4-position of indeno[1,2-b]pyridinols exhibited potent antiproliferative activity and topoisomerase IIα-selective inhibition. Of the 172 compounds tested, 89 showed highly potent and selective topoisomerase IIα inhibition and antiproliferative activity in the nanomolar range against human T47D breast (2.6 nM) cancer cell lines. In addition, mechanistic studies revealed compound 89 is a nonintercalative topoisomerase II poison, and in vitro studies showed it had promising cytotoxic effects in diverse breast cancer cell lines and was particularly effective at inducing apoptosis in T47D cells. Furthermore, in vivo administration of compound 89 had significant antitumor effects in orthotopic mouse model of breast cancer.
Collapse
Affiliation(s)
- Tara Man Kadayat
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
- New Drug Development Center , Daegu-Gyeongbuk Medical Innovation Foundation , Daegu 41061 , Republic of Korea
| | - Seojeong Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 120-750 , Republic of Korea
| | - Aarajana Shrestha
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Hyunji Jo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 120-750 , Republic of Korea
| | - Soo-Yeon Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 120-750 , Republic of Korea
| | - Pramila Katila
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Ritina Shrestha
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Mahesh Raj Nepal
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Keumhan Noh
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Sang Kyoon Kim
- Laboratory Animal Center , Daegu-Gyeongbuk Medical Innovation Foundation , Daegu 41061 , Republic of Korea
| | - Woo-Suk Koh
- Laboratory Animal Center , Daegu-Gyeongbuk Medical Innovation Foundation , Daegu 41061 , Republic of Korea
| | - Kil Soo Kim
- Laboratory Animal Center , Daegu-Gyeongbuk Medical Innovation Foundation , Daegu 41061 , Republic of Korea
- College of Veterinary Medicine , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center , Daegu-Gyeongbuk Medical Innovation Foundation , Daegu 41061 , Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 120-750 , Republic of Korea
| | - Eung-Seok Lee
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| |
Collapse
|
13
|
The crystal structure of 1,5-di(naphthalen-2-yl)-3-(pyridin-2-yl)pentane-1,5-dione, C 30H 23NO 2. Z KRIST-NEW CRYST ST 2019. [DOI: 10.1515/ncrs-2018-0378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C30H23NO2, orthorhombic, Pbca (no. 61), a = 10.7674(16) Å, b = 19.542(3) Å, c = 20.970(3) Å, V = 4412.5(11) Å3, Z = 8, R
gt(F) = 0.0350, wR
ref(F
2) = 0.0963, T = 153 K.
Collapse
|
14
|
Liang X, Wu Q, Luan S, Yin Z, He C, Yin L, Zou Y, Yuan Z, Li L, Song X, He M, Lv C, Zhang W. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Eur J Med Chem 2019; 171:129-168. [PMID: 30917303 DOI: 10.1016/j.ejmech.2019.03.034] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/28/2023]
Abstract
The topoisomerase enzymes play an important role in DNA metabolism, and searching for enzyme inhibitors is an important target in the search for new anticancer drugs. Discovery of new anticancer chemotherapeutical capable of inhibiting topoisomerase enzymes is highlighted in anticancer research. Therefore, biologists, organic chemists and medicinal chemists all around the world have been identifying, designing, synthesizing and evaluating a variety of novel bioactive molecules targeting topoisomerase. This review summarizes types of topoisomerase inhibitors in the past decade, and divides them into nine classes by structural characteristics, including N-heterocycles compounds, quinone derivatives, flavonoids derivatives, coumarin derivatives, lignan derivatives, polyphenol derivatives, diterpenes derivatives, fatty acids derivatives, and metal complexes. Then we discussed the application prospect and development of these anticancer compounds, as well as concluded parts of their structural-activity relationships. We believe this review would be invaluable in helping to further search potential topoisomerase inhibition as antitumor agent in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Qiang Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shangxian Luan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhixiang Yuan
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Min He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|