1
|
Azam U, Naseer MM, Rochais C. Analysis of skeletal diversity of multi-target directed ligands (MTDLs) targeting Alzheimer's disease. Eur J Med Chem 2025; 286:117277. [PMID: 39848035 DOI: 10.1016/j.ejmech.2025.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
Alzheimer's disease (AD) remains a significant healthcare challenge, necessitating innovative therapeutic approaches to address its complex and multifactorial nature. Traditional drug discovery strategies targeting single molecular targets are not sufficient for the effective treatment of AD. In recent years, MTDLs have emerged as promising candidates for AD therapy, aiming to simultaneously modulate multiple pathological targets. Among the various strategies employed in MTDL design, pharmacophore hybridization offers a versatile approach to integrate diverse pharmacophoric features within a single molecular scaffold. This strategy provides access to a wide array of chemical space for the design and development of novel therapeutic agents. This review, therefore, provides a comprehensive overview of skeletal diversity exhibited by MTDLs designed recently for AD therapy based on pharmacophore hybridization approach. A diverse range of pharmacophoric elements and core scaffolds hybridized to construct MTDLs that has the potential to target multiple pathological features of AD including amyloid-beta aggregation, tau protein hyperphosphorylation, cholinergic dysfunction, oxidative stress, and neuroinflammation are discussed. Through the comprehensive analysis and integration of structural insights of key biomolecular targets, this review aims to enhance optimization efforts in MTDL design, ultimately striving towards a comprehensive cure for the multifaceted pathophysiology of the disease.
Collapse
Affiliation(s)
- Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| | - Christophe Rochais
- Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| |
Collapse
|
2
|
Meng HW, Shen ZB, Meng XS, Leng-Wei, Yin ZQ, Wang XR, Zou TF, Liu ZG, Wang TX, Zhang S, Chen YL, Yang XX, Li QS, Duan YJ. Novel flavonoid 1,3,4-oxadiazole derivatives ameliorate MPTP-induced Parkinson's disease via Nrf2/NF-κB signaling pathway. Bioorg Chem 2023; 138:106654. [PMID: 37300959 DOI: 10.1016/j.bioorg.2023.106654] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with a complex etiology. Neuroinflammation and oxidative stress are important factors driving the progression of PD. It has been reported that 1,3,4-oxadiazole and flavone derivatives have numerous biological functions, especially in the aspect of anti-inflammatory and antioxidant. Based on the strategy of pharmacodynamic combination, we introduced 1,3,4-oxadiazole moiety into the flavonoid backbone, designed and synthesized a series of novel flavonoid 1,3,4-oxadiazole derivatives. Further, we evaluated their toxicity, anti-inflammatory and antioxidant activities using BV2 microglia. Following a comprehensive analysis, compound F12 showed the best pharmacological activity. In vivo, we induced the classical PD animal model by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into C57/BL6J mice. Our results showed that compound F12 ameliorated MPTP-induced dysfunction in mice. Further, compound F12 reduced oxidative stress by promoting the nucleation of nuclear factor erythroid 2-related factor 2 (Nrf2) and decreased the inflammatory response by inhibiting the nuclear translocation of nuclear factor-κB (NF-κB) in vivo and in vitro. Meanwhile, compound F12 inhibited the mitochondrial apoptotic pathway to rescue microglia inflammation-mediated loss of dopaminergic neurons. In conclusion, compound F12 reduced oxidative stress and inflammation and could be as a potential agent for PD treatment.
Collapse
Affiliation(s)
- Hua-Wen Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhen-Bao Shen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xian-She Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Leng-Wei
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ze-Qun Yin
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xue-Rui Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ting-Feng Zou
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhi-Gang Liu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tian-Xiang Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuan-Li Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiao-Xiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Qing-Shan Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Ya-Jun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China; Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Cores Á, Carmona-Zafra N, Clerigué J, Villacampa M, Menéndez JC. Quinones as Neuroprotective Agents. Antioxidants (Basel) 2023; 12:1464. [PMID: 37508002 PMCID: PMC10376830 DOI: 10.3390/antiox12071464] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Quinones can in principle be viewed as a double-edged sword in the treatment of neurodegenerative diseases, since they are often cytoprotective but can also be cytotoxic due to covalent and redox modification of biomolecules. Nevertheless, low doses of moderately electrophilic quinones are generally cytoprotective, mainly due to their ability to activate the Keap1/Nrf2 pathway and thus induce the expression of detoxifying enzymes. Some natural quinones have relevant roles in important physiological processes. One of them is coenzyme Q10, which takes part in the oxidative phosphorylation processes involved in cell energy production, as a proton and electron carrier in the mitochondrial respiratory chain, and shows neuroprotective effects relevant to Alzheimer's and Parkinson's diseases. Additional neuroprotective quinones that can be regarded as coenzyme Q10 analogues are idobenone, mitoquinone and plastoquinone. Other endogenous quinones with neuroprotective activities include tocopherol-derived quinones, most notably vatiquinone, and vitamin K. A final group of non-endogenous quinones with neuroprotective activity is discussed, comprising embelin, APX-3330, cannabinoid-derived quinones, asterriquinones and other indolylquinones, pyrroloquinolinequinone and its analogues, geldanamycin and its analogues, rifampicin quinone, memoquin and a number of hybrid structures combining quinones with amino acids, cholinesterase inhibitors and non-steroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Noelia Carmona-Zafra
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - José Clerigué
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Mercedes Villacampa
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| |
Collapse
|
4
|
Novel Morpholine-Bearing Quinoline Derivatives as Potential Cholinesterase Inhibitors: The Influence of Amine, Carbon Linkers and Phenylamino Groups. Int J Mol Sci 2022; 23:ijms231911231. [PMID: 36232533 PMCID: PMC9570490 DOI: 10.3390/ijms231911231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
A series of novel 4-N-phenylaminoquinoline derivatives containing a morpholine group were designed and synthesized, and their anti-cholinesterase activities and ABTS radical-scavenging activities were tested. Among them, compounds 11a, 11g, 11h, 11j, 11l, and 12a had comparable inhibition activities to reference galantamine in AChE. Especially, compound 11g revealed the most potent inhibition on AChE and BChE with IC50 values of 1.94 ± 0.13 μM and 28.37 ± 1.85 μM, respectively. The kinetic analysis demonstrated that both the compounds 11a and 11g acted as mixed-type AChE inhibitors. A further docking comparison between the 11a- and 12a-AChE complexes agreed with the different inhibitory potency observed in experiments. Besides, compounds 11f and 11l showed excellent ABTS radical-scavenging activities, with IC50 values of 9.07 ± 1.34 μM and 6.05 ± 1.17 μM, respectively, which were superior to the control, Trolox (IC50 = 11.03 ± 0.76 μM). It is worth noting that 3-aminoquinoline derivatives 12a–12d exhibited better drug-like properties.
Collapse
|
5
|
Nguyen HT, Nguyen Thi QG, Nguyen Thi TH, Thi PH, Le-Nhat-Thuy G, Dang Thi TA, Le-Quang B, Pham-The H, Van Nguyen T. Synthesis and biological activity, and molecular modelling studies of potent cytotoxic podophyllotoxin-naphthoquinone compounds. RSC Adv 2022; 12:22004-22019. [PMID: 36043070 PMCID: PMC9361925 DOI: 10.1039/d2ra03312g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/27/2022] [Indexed: 12/20/2022] Open
Abstract
A new approach for the synthesis of podophyllotoxin-naphthoquinone compounds using microwave-assisted three-component reactions is reported in this study. Novel podophyllotoxin-naphthoquinone derivatives with modification on ring E were synthesized. All the synthetic compounds were assessed in terms of their cytotoxicity profile against four cancer cell lines (KB, HepG2, A549, and MCF7), and noncancerous Hek-293 cell lines. Notably, treatment of SK-LU-1 cells with compounds 5a and 5b resulted in G2/M phase arrest of the cell cycle, caspase-3/7 activation, and apoptosis. Additionally, molecular docking studies were performed and showed important interaction of two compounds against residues in the colchicine-binding-site of tubulin as well. Taken together, compounds 5a and 5b were identified as potent anticancer agents. A new approach for the synthesis of podophyllotoxin-naphthoquinone compounds using microwave-assisted three-component reactions is reported in this study.![]()
Collapse
Affiliation(s)
- Ha Thanh Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Quynh Giang Nguyen Thi
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Thu Ha Nguyen Thi
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Phuong Hoang Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Giang Le-Nhat-Thuy
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Tuyet Anh Dang Thi
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Bao Le-Quang
- Hanoi Unviversity of Pharmacy 13-15 Le Thanh Tong Hoan Kiem Hanoi Vietnam
| | - Hai Pham-The
- Hanoi Unviversity of Pharmacy 13-15 Le Thanh Tong Hoan Kiem Hanoi Vietnam
| | - Tuyen Van Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| |
Collapse
|
6
|
Campora M, Francesconi V, Schenone S, Tasso B, Tonelli M. Journey on Naphthoquinone and Anthraquinone Derivatives: New Insights in Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:33. [PMID: 33466332 PMCID: PMC7824805 DOI: 10.3390/ph14010033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is characterized by memory loss, cognitive impairment, and functional decline leading to dementia and death. AD imposes neuronal death by the intricate interplay of different neurochemical factors, which continue to inspire the medicinal chemist as molecular targets for the development of new agents for the treatment of AD with diverse mechanisms of action, but also depict a more complex AD scenario. Within the wide variety of reported molecules, this review summarizes and offers a global overview of recent advancements on naphthoquinone (NQ) and anthraquinone (AQ) derivatives whose more relevant chemical features and structure-activity relationship studies will be discussed with a view to providing the perspective for the design of viable drugs for the treatment of AD. In particular, cholinesterases (ChEs), β-amyloid (Aβ) and tau proteins have been identified as key targets of these classes of compounds, where the NQ or AQ scaffold may contribute to the biological effect against AD as main unit or significant substructure. The multitarget directed ligand (MTDL) strategy will be described, as a chance for these molecules to exhibit significant potential on the road to therapeutics for AD.
Collapse
Affiliation(s)
| | | | | | | | - Michele Tonelli
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; (M.C.); (V.F.); (S.S.); (B.T.)
| |
Collapse
|
7
|
Su C, Chen Y, Chen K, Li W, Tang H. Inhibitory potency of 4- substituted sampangine derivatives toward Cu2+ mediated aggregation of amyloid β-peptide, oxidative stress, and inflammation in Alzheimer's disease. Neurochem Int 2020; 139:104794. [DOI: 10.1016/j.neuint.2020.104794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 01/04/2023]
|
8
|
Kamalifar S, Kiyani H. An Expeditious One-Pot Three-Component Synthesis of 4-Aryl-3,4-dihydrobenzo[g] quinoline-2,5,10(1H)-triones under Green Conditions. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191108123330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
:
An efficient and facial one-pot synthesis of 4-aryl-3,4-dihydrobenzo[g]quinoline-
2,5,10(1H)-triones was developed for the first time. The process proceeded via the
three-component cyclocondensation of 2-amino-1,4-naphthoquinone with Meldrum’s acid
and substituted benzaldehydes under green conditions. The fused 3,4-dihydropyridin-2(1H)-
one-ring naphthoquinones have been synthesized with good to high yields in refluxing
ethanol as a green reaction medium. This protocol is simple and effective as well as does
not involve the assistance of the catalyst, additive, or hazardous solvents.
Collapse
Affiliation(s)
| | - Hamzeh Kiyani
- School of Chemistry, Damghan University, Damghan, Iran
| |
Collapse
|
9
|
Cai R, Wang LN, Fan JJ, Geng SQ, Liu YM. New 4-N-phenylaminoquinoline derivatives as antioxidant, metal chelating and cholinesterase inhibitors for Alzheimer’s disease. Bioorg Chem 2019; 93:103328. [DOI: 10.1016/j.bioorg.2019.103328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/31/2022]
|
10
|
Kamalifar S, Kiyani H. An expeditious and green one-pot synthesis of 12-substituted-3,3-dimethyl-3,4,5,12-tetrahydrobenzo[b]acridine-1,6,11(2H)-triones. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04014-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|