1
|
Golovina A, Proia E, Fiorentino F, Yunin M, Kasatkina M, Zigangirova N, Soloveva A, Sysolyatina E, Ermolaeva S, Novikov R, Silonov S, Pushkin S, Mladenović M, Isakova J, Belik A, Nawrozkij M, Rotili D, Ragno R, Ivanov R. (Heteroarylmethyl)benzoic Acids as a New Class of Bacterial Cystathionine γ-Lyase Inhibitors: Synthesis, Biological Evaluation, and Molecular Modeling. ACS Infect Dis 2024; 10:2127-2150. [PMID: 38771206 DOI: 10.1021/acsinfecdis.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Antibiotic resistance is one of the most serious global health threats. Therefore, there is a need to develop antimicrobial agents with new mechanisms of action. Targeting of bacterial cystathionine γ-lyase (bCSE), an enzyme essential for bacterial survival, is a promising approach to overcome antibiotic resistance. Here, we described a series of (heteroarylmethyl)benzoic acid derivatives and evaluated their ability to inhibit bCSE or its human ortholog hCSE using known bCSE inhibitor NL2 as a lead compound. Derivatives bearing the 6-bromoindole group proved to be the most active, with IC50 values in the midmicromolar range, and highly selective for bCSE over hCSE. Furthermore, none of these compounds showed significant toxicity to HEK293T cells. The obtained data were rationalized by ligand-based and structure-based molecular modeling analyses. The most active compounds were also found to be an effective adjunct to several widely used antibacterial agents against clinically relevant antibiotic-resistant strains of such bacteria as Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The most potent compounds, 3h and 3i, also showed a promising in vitro absorption, distribution, metabolism, and excretion (ADME) profile. Finally, compound 3i manifested potentiating activity in pneumonia, sepsis, and infected-wound in vivo models.
Collapse
Affiliation(s)
- Anastasia Golovina
- Sirius University of Science and Technology, Olympic Avenue, 1, Sirius , Krasnodar Region 354340, Russia
| | - Eleonora Proia
- Rome Center for Molecular Design, Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5 , Rome 00185, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, Rome 00185, Italy
| | - Maxim Yunin
- Sirius University of Science and Technology, Olympic Avenue, 1, Sirius , Krasnodar Region 354340, Russia
| | - Maria Kasatkina
- Sirius University of Science and Technology, Olympic Avenue, 1, Sirius , Krasnodar Region 354340, Russia
| | - Nailya Zigangirova
- National Research Centre of Epidemiology and Microbiology named after N. F. Gamaleya, Russian Health Ministry, Gamaleya St.18 , 123098 Moscow, Russia
| | - Anna Soloveva
- National Research Centre of Epidemiology and Microbiology named after N. F. Gamaleya, Russian Health Ministry, Gamaleya St.18 , 123098 Moscow, Russia
| | - Elena Sysolyatina
- National Research Centre of Epidemiology and Microbiology named after N. F. Gamaleya, Russian Health Ministry, Gamaleya St.18 , 123098 Moscow, Russia
| | - Svetlana Ermolaeva
- National Research Centre of Epidemiology and Microbiology named after N. F. Gamaleya, Russian Health Ministry, Gamaleya St.18 , 123098 Moscow, Russia
| | - Roman Novikov
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St. , Moscow 119991, Russia
| | - Sergei Silonov
- Sirius University of Science and Technology, Olympic Avenue, 1, Sirius , Krasnodar Region 354340, Russia
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue , St. Petersburg 194064, Russia
| | - Sergei Pushkin
- Sirius University of Science and Technology, Olympic Avenue, 1, Sirius , Krasnodar Region 354340, Russia
| | - Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12 , Kragujevac 34000, P.O. Box 60, Serbia
| | - Julia Isakova
- Sirius University of Science and Technology, Olympic Avenue, 1, Sirius , Krasnodar Region 354340, Russia
| | - Albina Belik
- Sirius University of Science and Technology, Olympic Avenue, 1, Sirius , Krasnodar Region 354340, Russia
| | - Maxim Nawrozkij
- Sirius University of Science and Technology, Olympic Avenue, 1, Sirius , Krasnodar Region 354340, Russia
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, Rome 00185, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5 , Rome 00185, Italy
| | - Roman Ivanov
- Sirius University of Science and Technology, Olympic Avenue, 1, Sirius , Krasnodar Region 354340, Russia
| |
Collapse
|
2
|
Zhu M, Li Y, Chen DP, Li CP, Ouyang GP, Wang ZC. Allicin-inspired disulfide derivatives containing quinazolin-4(3H)-one as a bacteriostat against Xanthomonas oryzae pv. oryzae. PEST MANAGEMENT SCIENCE 2023; 79:537-547. [PMID: 36193761 DOI: 10.1002/ps.7221] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Plant bacterial diseases have seriously affected the yield and quality of crops, among which rice bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv. oryzae has seriously affected the yield of rice. As plant-pathogenic bacteria gradually become resistant to existing bactericides, it is necessary to find effective bactericides with novel structures. RESULTS Herein, a series of compounds containing quinazolin-4(3H)-one and disulfide moieties were designed and synthesized using a facile synthetic method. The bioassay results revealed that most target compounds possessed noticeable antibacterial activity against Xanthomonas oryzae pv. oryzae. Particularly, compound 2-(butyldisulfanyl) quinazolin-4(3H)-one (1) exhibited remarkable antibacterial activity with the half effective concentration (EC50 ) of 0.52 μg mL-1 . Additionally, compound 1 was confirmed to inhibit the growth of the bacteria, change the bacterial morphology, and increase the level of reactive oxygen species. Proteomics, and RT-qPCR analysis results indicated that compound 1 could downregulate the expression of Pil-Chp histidine kinase chpA encoded by the pilL gene, and the potting experiments proved that compound 1 exhibits significant protective activity against BLB. CONCLUSIONS Compound 1 may weaken the pathogenicity of Xanthomonas oryzae pv. oryzae by inhibiting the bacterial growth and blocking the pili-mediated twitching motility without inducing the bacterial apoptosis. This study indicates that such derivatives could be a promising scaffold to develop a bacteriostat to control BLB. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mei Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yan Li
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Dan-Ping Chen
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Cheng-Peng Li
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Gui-Ping Ouyang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Zhen-Chao Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
- College of Pharmacy, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Antimicrobial, anticancer and immunomodulatory potential of new quinazolines bearing benzenesulfonamide moiety. Future Med Chem 2023; 15:275-290. [PMID: 36891994 DOI: 10.4155/fmc-2022-0297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Sulfonamides are privileged candidates with potent anti-methicillin-resistant Staphylococcus aureus (MRSA) activity and could replenish the MRSA antibiotic pipeline. The initial screening of a series of quinazolinone benzenesulfonamide derivatives 5-18 against multidrug-resistant bacterial and fungal strains revealed their potent activity. The promising compounds were conjugated with ZnONPs to study the effect of nanoparticle formation on the antimicrobial, cytotoxic and immunomodulatory activity. Compounds 5, 11, 16 and 18 revealed promising antimicrobial and cytotoxic activities with superior safety profiles and enhanced activity upon nanoformulation. The immunomodulatory potential of compounds 5, 11, 16 and 18 was assessed. Compounds 5 and 11 demonstrated an increase in spleen and thymus weight and boosted the activation of CD4+ and CD8+ T lymphocytes, confirming their promising antimicrobial, cytotoxic and immunomodulatory activity.
Collapse
|
4
|
Yang H, Zhao D, Wang S, Yang L, Huang J, Zhang Z, Li S. A study on the antibacterial activity and antimicrobial resistance of pyridinium cationic pillar[5]arene against Staphylococcus aureus and Escherichia coli. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023; 26:59-68. [PMID: 35953617 DOI: 10.1007/s10123-022-00269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 01/06/2023]
Abstract
An increasing number of infections caused by multidrug-resistant (MDR) Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) have severely affected human society. Thus, it is essential to develop an alternative type of antibacterial agents that has a different bacterial resistance mechanism from that of traditional antibiotics. After the synthesis and structural characterization of a cationic pillar[5]arene with pyridinium groups (PP5), the antibacterial and antibiofilm activities as well as its microbial resistance were systematically investigated. In-depth evaluation of biological studies revealed that PP5 was an active antibacterial agent, with surprising antibiofilm formation ability against E. coli and S. aureus. From the results of differential scanning calorimetry and transmission electron microscopy, it was concluded that the microbicidal activity of PP5 was due to the physical disruption of the pathogen's membrane and the subsequent leakage of cytoplasmic components, which could greatly reduce the rapid generation of resistance. It was presented that the easily available PP5 has high activity to inhibit Gram-positive and Gram-negative bacteria and/or their biofilms with low cytotoxicity. This pillar[5]arene derivative can be used as a good candidate for controlling drug-resistant pathogenic bacterial infections and treating MDR bacteria.
Collapse
Affiliation(s)
- Hua Yang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Dengqi Zhao
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Shuping Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Lijun Yang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Jianying Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China.
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| |
Collapse
|
5
|
Rahmani Khajouei M, Khodarahmi G, Ghaderi A. Synthesis and cytotoxic evaluation of some novel 3-[2-(2-phenyl-thiazol-4-yl)-ethyl]-3H-pyrido[2,3-d]pyrimidin-4-one derivatives. Res Pharm Sci 2021; 16:455-463. [PMID: 34522193 PMCID: PMC8407154 DOI: 10.4103/1735-5362.323912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Background and purpose Pyridopyrimidine and its derivatives have a variety of chemical and biological significances. Thiazole-containing compounds have also been reported to have a wide range of biological activities. Due to the valuable cytotoxic effects of both thiazole and pyridopyrimidinone derivatives, a series of pyridopyrimidinone-thiazole hybrids were synthesized in the present study. Experimental approach Briefly, different acyl chlorides were reacted with 2-amino nicotinic acid followed by anhydride acetic to give the corresponding pyridobenzoxazinones. The aminothiazole derivative G was also prepared via a multistep procedure and incorporated into the benzoxazinones to furnish the target pyridopyrimidinone, K1-K5. Furthermore, the cytotoxic activity of the final compounds was determined against MCF-7 and HeLa cell lines using MTT assay. Findings/Results The results indicated that aromatic substitution on C2 of pyridopyrimidine nucleus was in favor of cytotoxic activity on both cell lines, of which, compound K5 bearing a chlorophenyl group showed the highest cytotoxicity. Conclusion and implications The results of the present study are valuable in terms of synthesis of hybrid molecules and also cytotoxic evaluations which can be useful for future investigations about the design of novel pyridopyrimidinone-thiazole hybrids possessing better cytotoxic activities.
Collapse
Affiliation(s)
- Marzieh Rahmani Khajouei
- Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ghadamali Khodarahmi
- Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, I.R. Iran.,Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Aram Ghaderi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
6
|
|
7
|
Malasala S, Gour J, Ahmad MN, Gatadi S, Shukla M, Kaul G, Dasgupta A, Madhavi YV, Chopra S, Nanduri S. Copper mediated one-pot synthesis of quinazolinones and exploration of piperazine linked quinazoline derivatives as anti-mycobacterial agents. RSC Adv 2020; 10:43533-43538. [PMID: 35519697 PMCID: PMC9058414 DOI: 10.1039/d0ra08644d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 10/29/2020] [Indexed: 11/26/2022] Open
Abstract
A facile method was developed for the synthesis of quinazolinone derivatives in a one-pot condensation reaction via in situ amine generation using ammonia as the amine source and with the formation of four new C-N bonds in good to excellent yields. With the optimised method, we synthesized a library of piperazine linked quinazoline derivatives and the synthesized compounds were evaluated for their inhibitory activity against Mycobacterium tuberculosis. The compounds 8b, 8e, 8f, 8m, 8n and 8v showed potent anti-mycobacterial activity with MIC values of 2-16 μg mL-1. All the synthesized compounds follow Lipinski's rules for drug likeness.
Collapse
Affiliation(s)
- Satyaveni Malasala
- National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Jitendra Gour
- National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Md Naiyaz Ahmad
- Division of Microbiology, CSIR-Central Drug Research Institute Sitapur Road, Sector 10, Janakipuram Extension Lucknow-226031 Uttar Pradesh India
| | - Srikanth Gatadi
- National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Manjulika Shukla
- Division of Microbiology, CSIR-Central Drug Research Institute Sitapur Road, Sector 10, Janakipuram Extension Lucknow-226031 Uttar Pradesh India
| | - Grace Kaul
- Division of Microbiology, CSIR-Central Drug Research Institute Sitapur Road, Sector 10, Janakipuram Extension Lucknow-226031 Uttar Pradesh India
| | - Arunava Dasgupta
- Division of Microbiology, CSIR-Central Drug Research Institute Sitapur Road, Sector 10, Janakipuram Extension Lucknow-226031 Uttar Pradesh India
| | - Y V Madhavi
- National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute Sitapur Road, Sector 10, Janakipuram Extension Lucknow-226031 Uttar Pradesh India
| | - Srinivas Nanduri
- National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
8
|
Synthesis, In Silico and In Vitro Assessment of New Quinazolinones as Anticancer Agents via Potential AKT Inhibition. Molecules 2020; 25:molecules25204780. [PMID: 33080996 PMCID: PMC7594071 DOI: 10.3390/molecules25204780] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023] Open
Abstract
A series of novel quinazolinone derivatives (2–13) was synthesized and examined for their cytotoxicity to HepG2, MCF-7, and Caco-2 in an MTT assay. Among these derivatives, compounds 4 and 9 exhibited significant cytotoxic activity against Caco-2, HepG2, and MCF-7 cancer cells. Compound 4 had more significant inhibitory effects than compound 9 on Caco-2, HepG2, and MCF-7 cell lines, with IC50 values of 23.31 ± 0.09, 53.29 ± 0.25, and 72.22 ± 0.14µM, respectively. The AKT pathway is one of human cancer’s most often deregulated signals. AKT is also overexpressed in human cancers such as glioma, lung, breast, ovarian, gastric, and pancreas. A molecular docking study was performed to analyze the inhibitory action of newly synthetic quinazolinone derivatives against Homo sapiens AKT1 protein. Molecular docking simulations were found to be in accordance with in vitro studies, and hence supported the biological activity. The results suggested that compounds 4 and 9 could be used as drug candidates for cancer therapy via its potential inhibition of AKT1 as described by docking study.
Collapse
|
9
|
Malasala S, Ahmad MN, Gour J, Shukla M, Kaul G, Akhir A, Gatadi S, Madhavi Y, Chopra S, Nanduri S. Synthesis, biological evaluation and molecular modelling insights of 2-arylquinazoline benzamide derivatives as anti-tubercular agents. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Song R, Wang Y, Wang M, Gao R, Yang T, Yang S, Yang CG, Jin Y, Zou S, Cai J, Fan R, He Q. Design and synthesis of novel desfluoroquinolone-aminopyrimidine hybrids as potent anti-MRSA agents with low hERG activity. Bioorg Chem 2020; 103:104176. [PMID: 32891858 DOI: 10.1016/j.bioorg.2020.104176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 01/05/2023]
Abstract
Despite the fact that the introduction of a fluorine atom at the C-6 position has resulted in the evolution of fluoroquinolones, fluoroquinolone-induced cardiac toxicity has drawn considerable attention. In this context, desfluoroquinolone-based hybrids with involvement of C-7 aminopyrimidine functional group were designed and synthesized. The biological results showed majority of these hybrids still demonstrated potent anti-MRSA activity with MIC values between 0.38 and 1.5 μg/mL, despite the lack of the typical C-6 fluorine atom. Particularly, the most active B14 exhibited activities at submicromolar concentrations against a panel of MRSA strains including vancomycin-intermediate strains, levofloxacin-resistant isolates, and linezolid-resistant isolates, etc. As expected, it also displayed highly selective toxicity toward bacterial cells and low hERG inhibition. Further resistance development study indicated MRSA is unlikely to acquire resistance against B14. The docking study revealed that two hydrogen bonds were formed between the C-7 substituent and the surrounding DNA bases, which might contribute to overcome resistance by reducing the dependence on the magnesium-water bridge interactions with topoisomerase IV. These results indicate a promising strategy for developing new antibiotic quinolones to combat multidrug resistance and cardiotoxicity.
Collapse
Affiliation(s)
- Runzhe Song
- Department of Chemistry, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Yue Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Minghui Wang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Ruixuan Gao
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Teng Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongsheng Jin
- School of Pharmacy, The Second Military Medical University, Shanghai 200433, China
| | - Siyuan Zou
- Department of Chemistry, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai 200438, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States.
| | - Renhua Fan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai 200438, China.
| | - Qiuqin He
- Department of Chemistry, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai 200438, China.
| |
Collapse
|
11
|
Thakral S, Narang R, Kumar M, Singh V. Synthesis, molecular docking and molecular dynamic simulation studies of 2-chloro-5-[(4-chlorophenyl)sulfamoyl]- N-(alkyl/aryl)-4-nitrobenzamide derivatives as antidiabetic agents. BMC Chem 2020; 14:49. [PMID: 32789301 PMCID: PMC7416410 DOI: 10.1186/s13065-020-00703-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/03/2020] [Indexed: 11/10/2022] Open
Abstract
A series of 2-chloro-5-[(4-chlorophenyl)sulfamoyl]-N-(alkyl/aryl)-4-nitrobenzamide derivatives (5a-5v) has been synthesized and confirmed by physicochemical(Rf, melting point) and spectral means (IR, 1HNMR, 13CNMR). The results of in vitro antidiabetic study against α-glucosidase indicated that compound 5o bearing 2-CH3-5-NO2 substituent on phenyl ring was found to be the most active compound against both enzymes. The electron donating (CH3) group and electron withdrawing (NO2) group on a phenyl ring highly favoured the inhibitory activity against these enzymes. The docking simulations study revealed that these synthesized compounds displayed hydrogen bonding, electrostatic and hydrophobic interactions with active site residues. The structure activity relationship studies of these compounds were also corroborated with the help of molecular modeling studies. Molecular dynamic simulations have been done for top most active compound for validating its α-glucosidase and α-amylase inhibitory potential, RMSD analysis of ligand protein complex suggested the stability of top most active compound 5o in binding site of target proteins. In silico ADMET results showed that synthesized compounds were found to have negligible toxicity, good solubility and absorption profile as the synthesized compounds fulfilled Lipinski's rule of 5 and Veber's rule.
Collapse
Affiliation(s)
- Samridhi Thakral
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001 India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136118 Haryana India
| | - Manoj Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001 India
| | - Vikramjeet Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001 India
| |
Collapse
|
12
|
Qian Y, Allegretta G, Janardhanan J, Peng Z, Mahasenan KV, Lastochkin E, Gozun MMN, Tejera S, Schroeder VA, Wolter WR, Feltzer R, Mobashery S, Chang M. Exploration of the Structural Space in 4(3 H)-Quinazolinone Antibacterials. J Med Chem 2020; 63:5287-5296. [PMID: 32343145 DOI: 10.1021/acs.jmedchem.0c00153] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report herein the syntheses of 79 derivatives of the 4(3H)-quinazolinones and their structure-activity relationship (SAR) against methicillin-resistant Staphylococcus aureus (MRSA). Twenty one analogs were further evaluated in in vitro assays. Subsequent investigation of the pharmacokinetic properties singled out compound 73 ((E)-3-(5-carboxy-2-fluorophenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one) for further study. The compound synergized with piperacillin-tazobactam (TZP) both in vitro and in vivo in a clinically relevant mouse model of MRSA infection. The TZP combination lacks activity against MRSA, yet it synergized with compound 73 to kill MRSA in a bactericidal manner. The synergy is rationalized by the ability of the quinazolinones to bind to the allosteric site of penicillin-binding protein (PBP)2a, resulting in opening of the active site, whereby the β-lactam antibiotic now is enabled to bind to the active site in its mechanism of action. The combination effectively treats MRSA infection, for which many antibiotics (including TZP) have faced clinical obsolescence.
Collapse
Affiliation(s)
- Yuanyuan Qian
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Giuseppe Allegretta
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jeshina Janardhanan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Zhihong Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kiran V Mahasenan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Elena Lastochkin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Melissa Malia N Gozun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sara Tejera
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Valerie A Schroeder
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - William R Wolter
- Freimann Life Sciences Center, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Rhona Feltzer
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
13
|
Gatadi S, Pulivendala G, Gour J, Malasala S, Bujji S, Parupalli R, Shaikh M, Godugu C, Nanduri S. Synthesis and evaluation of new 4(3H)-Quinazolinone derivatives as potential anticancer agents. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
The Synergy of Ciprofloxacin and Carvedilol against Staphylococcus aureus-Prospects of a New Treatment Strategy? Molecules 2019; 24:molecules24224104. [PMID: 31739388 PMCID: PMC6891268 DOI: 10.3390/molecules24224104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus infections are common and difficult to treat. The increasing number of drug-resistant staphylococcal infections has created the need to develop new strategies for the treatment of these infections. The synergistic antimicrobial activity of different pharmaceuticals seems to be an interesting alternative. The aim of this study was to assess the synergistic activity of ciprofloxacin and carvedilol against S. aureus strains. The antibacterial potential of ciprofloxacin and carvedilol was evaluated according to the CLSI guidelines. The calcium content in S. aureus cells was measured using flow cytometry and atomic absorption spectroscopy. Moreover, confocal and scanning electron microscopy were used to determine the mechanism of antibacterial synergy of ciprofloxacin and carvedilol. The antibacterial effect of ciprofloxacin was higher in the presence of carvedilol than in S. aureus cultures containing the antibiotic only. A significant increase in S. aureus membrane permeability was also observed. The simultaneous administration of the tested compounds caused damage to S. aureus cells visualized by SEM. Enhancement of the antimicrobial action of ciprofloxacin by carvedilol was correlated with an increase in free calcium content in S. aureus cells, morphological changes to the cells, and a reduction in the ability to form bacterial aggregates.
Collapse
|
15
|
Gatadi S, Madhavi YV, Chopra S, Nanduri S. Promising antibacterial agents against multidrug resistant Staphylococcus aureus. Bioorg Chem 2019; 92:103252. [PMID: 31518761 DOI: 10.1016/j.bioorg.2019.103252] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/10/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
Rapid emergence of multidrug resistant Staphylococcus aureus infections has created a critical health menace universally. Resistance to all the available chemotherapeutics has been on rise which led to WHO to stratify Staphylococcus aureus as high tier priorty II pathogen. Hence, discovery and development of new antibacterial agents with new mode of action is crucial to address the multidrug resistant Staphylococcus aureus infections. The egressing understanding of new antibacterials on their biological target provides opportunities for new therapeutic agents. This review underlines on various aspects of drug design, structure activity relationships (SARs) and mechanism of action of various new antibacterial agents and also covers the recent reports on new antibacterial agents with potent activity against multidrug resistant Staphylococcus aureus. This review provides attention on in vitro and in vivo pharmacological activities of new antibacterial agents in the point of view of drug discovery and development.
Collapse
Affiliation(s)
- Srikanth Gatadi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Y V Madhavi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
16
|
Gatadi S, Gour J, Shukla M, Kaul G, Dasgupta A, Madhavi YV, Chopra S, Nanduri S. Synthesis and evaluation of new quinazolin-4(3H)-one derivatives as potent antibacterial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis. Eur J Med Chem 2019; 175:287-308. [PMID: 31096152 DOI: 10.1016/j.ejmech.2019.04.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/05/2023]
Abstract
Staphylococcus aureus and Mycobacterium tuberculosis are major causative agents responsible for serious nosocomial and community-acquired infections impacting healthcare systems globally. Over several decades, these pathogens have developed resistance to multiple antibiotics significantly affecting morbidity and mortality. Thus, these recalcitrant pathogens are amongst the most formidable microbial pathogens for which international healthcare agencies have mandated active identification and development of new antibacterial agents for chemotherapeutic intervention. In our present work, a series of new quinazolin-4(3H)-one derivatives were designed, synthesized and evaluated for their antibacterial activity against ESKAP pathogens and pathogenic mycobacteria. The experiments revealed that 4'c, 4'e, 4'f and 4'h displayed selective and potent inhibitory activity against Staphylococcus aureus with MIC values ranging from 0.03-0.25 μg/mL. Furthermore, compounds 4'c and 4'e were found to be benign to Vero cells (CC50 = >5 μg/mL) and displayed promising selectivity index (SI) > 167 and > 83.4 respectively. Additionally, 4'c and 4'e demonstrated equipotent MIC against multiple drug-resistant strains of S. aureus including VRSA, concentration dependent bactericidal activity against S. aureus and synergized with FDA approved drugs. Moreover, compound 4'c exhibited more potent activity in reducing the biofilm and exhibited a PAE of ∼2 h at 10X MIC which is comparable to levofloxacin and vancomycin. In vivo efficacy of 4'c in murine neutropenic thigh infection model revealed that 4'c caused a similar reduction in cfu as vancomycin. Gratifyingly, compounds 4d, 4e, 9a, 9b, 14a, 4'e and 4'f also exhibited anti-mycobacterial activity with MIC values in the range of 2-16 μg/mL. In addition, the compounds were found to be less toxic to Vero cells (CC50 = 12.5->100 μg/mL), thus displaying a favourable selectivity index. The interesting results obtained here suggest the potential utilization of these new quinazolin-4(3H)-one derivatives as promising antibacterial agents for treating MDR-Staphylococcal and mycobacterial infections.
Collapse
Affiliation(s)
- Srikanth Gatadi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Jitendra Gour
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Manjulika Shukla
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India
| | - Grace Kaul
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India
| | - Arunava Dasgupta
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India
| | - Y V Madhavi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India.
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.
| |
Collapse
|
17
|
Gatadi S, Lakshmi TV, Nanduri S. 4(3H)-Quinazolinone derivatives: Promising antibacterial drug leads. Eur J Med Chem 2019; 170:157-172. [PMID: 30884322 DOI: 10.1016/j.ejmech.2019.03.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/15/2019] [Accepted: 03/06/2019] [Indexed: 12/25/2022]
Abstract
Emergence of drug resistance has created unmet medical need for the development of new classes of antibiotics. Discovery of new antibacterial agents with new mode of action remains a high priority universally. 4(3H)-quinazolinone, a fused nitrogen heterocyclic compound has emerged as a biologically privileged structure, possessing a wide range of biological properties viz. anticancer, antibacterial, antitubercular, antifungal, anti-HIV, anticonvulsant, anti-inflammatory and analgesic activities. Promising antibacterial properties of quinazolinones have enthused the medicinal chemists to explore and develop this fused heterocyclic system for new antibacterial agents. Utilization of quinazolinone core for the design and synthesis of new antibacterial agents has recently gained momentum. This review aims to provide an overview of the structures and antibacterial activity of various 4(3H)-quinazolinone derivatives covering various aspects of in vitro and in vivo pharmacological activities and structure activity relationships (SARs).
Collapse
Affiliation(s)
- Srikanth Gatadi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - T Vasanta Lakshmi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|