1
|
Xu M, Zhang D, Yan J. Targeting ferroptosis using Chinese herbal compounds to treat respiratory diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155738. [PMID: 38824825 DOI: 10.1016/j.phymed.2024.155738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Respiratory diseases pose a grave threat to human life. Therefore, understanding their pathogenesis and therapeutic strategy is important. Ferroptosis is a novel type of iron-dependent programmed cell death, distinct from apoptosis, necroptosis, and autophagy, characterised by iron, reactive oxygen species, and lipid peroxide accumulation, as well as glutathione (GSH) depletion and GSH peroxidase 4 (GPX4) inactivation. A close association between ferroptosis and the onset and progression of respiratory diseases, including chronic obstructive pulmonary disease, acute lung injury, bronchial asthma, pulmonary fibrosis, and lung cancer, has been reported. Recent studies have shown that traditional Chinese medicine (TCM) compounds exhibit unique advantages in the treatment of respiratory diseases owing to their natural properties and potential efficacy. These compounds can effectively regulate ferroptosis by modulating several key signalling pathways such as system Xc- -GSH-GPX4, NCOA4-mediated ferritinophagy, Nrf2-GPX4, and Nrf2/HO-1, thus playing a positive role in improving respiratory diseases. PURPOSE This comprehensive review systematically outlines the regulatory role of ferroptosis in the onset and progression of respiratory diseases and provides evidence for treating respiratory diseases by targeting ferroptosis with TCM compounds. These insights aim to offer potential remedies for the clinical prevention and treatment of respiratory diseases. STUDY DESIGN AND METHODS We searched scientific databases PubMed, Web of Science, Scopus, and CNKI using keywords such as "ferroptosis","respiratory diseases","chronic obstructive pulmonary disease","bronchial asthma","acute lung injury","pulmonary fibrosis","lung cancer","traditional Chinese medicine","traditional Chinese medicine compound","monomer", and "natural product" to retrieve studies on the therapeutic potential of TCM compounds in ameliorating respiratory diseases by targeting ferroptosis. The retrieved data followed PRISMA criteria (preferred reporting items for systematic review). RESULTS TCM compounds possess unique advantages in treating respiratory diseases, stemming from their natural origins and proven clinical effectiveness. TCM compounds can exert therapeutic effects on respiratory diseases by regulating ferroptosis, which mainly involves modulation of pathways such as system Xc- -GSH-GPX4,NCOA4-mediated ferritinophagy, Nrf2-GPX4, and Nrf2/HO-1. CONCLUSION TCM compounds have demonstrated promising potential in improving respiratory diseases through the regulation of ferroptosis. The identification of specific TCM-related inducers and inhibitors of ferroptosis holds great significance in developing more effective strategies. However, current research remains confined to animal and cellular studies, emphasizing the imperative for further verifications through high-quality clinical data.
Collapse
Affiliation(s)
- Mengjiao Xu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Di Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
2
|
Li J, Sun Y, Li G, Cheng C, Sui X, Wu Q. The Extraction, Determination, and Bioactivity of Curcumenol: A Comprehensive Review. Molecules 2024; 29:656. [PMID: 38338400 PMCID: PMC10856406 DOI: 10.3390/molecules29030656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Curcuma wenyujin is a member of the Curcuma zedoaria (zedoary, Zingiberaceae) family, which has a long history in traditional Chinese medicine (TCM) due to its abundant biologically active constituents. Curcumenol, a component of Curcuma wenyujin, has several biological activities. At present, despite different pharmacological activities being reported, the clinical usage of curcumenol remains under investigation. To further determine the characteristics of curcumenol, the extraction, determination, and bioactivity of the compound are summarized in this review. Existing research has reported that curcumenol exerts different pharmacological effects in regard to a variety of diseases, including anti-inflammatory, anti-oxidant, anti-bactericidal, anti-diabetic, and anti-cancer activity, and also ameliorates osteoporosis. This review of curcumenol provides a theoretical basis for further research and clinical applications.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.L.)
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Yitian Sun
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.L.)
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Guohua Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.L.)
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Chunsong Cheng
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Xinbing Sui
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.L.)
- Zhuhai M.U.S.T. Science and Technology Research Institute, Zhuhai 519031, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, China
| |
Collapse
|
3
|
Zhao T, Yu Z. Modified Gexia-Zhuyu Tang inhibits gastric cancer progression by restoring gut microbiota and regulating pyroptosis. Cancer Cell Int 2024; 24:21. [PMID: 38195483 PMCID: PMC10775600 DOI: 10.1186/s12935-024-03215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Gexia-Zhuyu Tang (GZT), a traditional Chinese medicine formula, is used to treat a variety of diseases. However, its roles in gastric cancer (GC) remain unclear. OBJECTIVE The aim of this study was to explore the roles and underlying molecular mechanisms of modified GZT in GC. METHODS The effects of modified GZT on GC were investigated by constructing mouse xenograft models with MFC cell line. The fecal samples from low-dose, high-dose, and without modified GZT treatment groups were collected for the 16S rRNA gene sequencing and fecal microbiota transplantation (FMT). Histopathological alterations of mice were evaluated using the hematoxylin-eosin (HE). Immunohistochemical (IHC) analysis with Ki67 and GSDMD was performed to measure tissue cell proliferation and pyroptosis, respectively. Proteins associated with pyroptosis, invasion, and metastasis were detected by Western blotting. Enzyme-linked immunosorbent assay (ELISA) was used to assess inflammation-related factors levels. RESULTS Modified GZT inhibited GC tumor growth and reduced metastasis and invasion-related proteins expression levels, including CD147, VEGF, and MMP-9. Furthermore, it notably promoted caspase-1-dependent pyroptosis, as evidenced by a dose-dependent increase in TNF-α, IL-1β, IL-18, and LDH levels, along with elevated protein expression of NLRP3, ASC, and caspase-1. Additionally, modified GZT increased species abundance and diversity of the intestinal flora. FMT assay identified that modified GZT inhibited GC tumor progression through regulation of intestinal flora. CONCLUSIONS Modified GZT treatment may promote pyroptosis by modulating gut microbiota in GC. This study identifies a new potential approach for the GC clinical treatment.
Collapse
Affiliation(s)
- Tingting Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai City, 200240, China
| | - Zhijian Yu
- School of Traditional Chinese Medicine, Southern Medical University,Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, No. 1023-1063, Shatai South Road, Guangzhou City, 510515, Guangdong Province, China.
| |
Collapse
|
4
|
Zhou X, Tan F, Zhang S, Zhang T. Deciphering the Underlying Mechanisms of Sanleng-Ezhu for the Treatment of Idiopathic Pulmonary Fibrosis Based on Network Pharmacology and Single-cell RNA Sequencing Data. Curr Comput Aided Drug Des 2024; 20:888-910. [PMID: 37559532 DOI: 10.2174/1573409920666230808120504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 08/11/2023]
Abstract
AIMS To decipher the underlying mechanisms of Sanleng-Ezhu for the treatment of idiopathic pulmonary fibrosis based on network pharmacology and single-cell RNA sequencing data. BACKGROUND Idiopathic Pulmonary Fibrosis (IPF) is the most common type of interstitial lung disease. Although the combination of herbs Sanleng (SL) and Ezhu (EZ) has shown reliable efficacy in the management of IPF, its underlying mechanisms remain unknown. METHODS Based on LC-MS/MS analysis and the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database, we identified the bioactive components of SL-EZ. After obtaining the IPF-related dataset GSE53845 from the Gene Expression Omnibus (GEO) database, we performed the differential expression analysis and the weighted gene co-expression network analysis (WGCNA), respectively. We obtained lowly and highly expressed IPF subtype gene sets by comparing Differentially Expressed Genes (DEGs) with the most significantly negatively and positively related IPF modules in WGCNA. Subsequently, we performed Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses on IPF subtype gene sets. The low- and highexpression MCODE subgroup feature genes were identified by the MCODE plug-in and were adopted for Disease Ontology (DO), GO, and KEGG enrichment analyses. Next, we performed the immune cell infiltration analysis of the MCODE subgroup feature genes. Single-cell RNA sequencing analysis demonstrated the cell types which expressed different MCODE subgroup feature genes. Molecular docking and animal experiments validated the effectiveness of SL-EZ in delaying the progression of pulmonary fibrosis. RESULTS We obtained 5 bioactive components of SL-EZ as well as their corresponding 66 candidate targets. After normalizing the samples of the GSE53845 dataset from the GEO database source, we obtained 1907 DEGs of IPF. Next, we performed a WGCNA analysis on the dataset and got 11 modules. Notably, we obtained 2 IPF subgroups by contrasting the most significantly up- and down-regulated modular genes in IPF with DEGs, respectively. The different IPF subgroups were compared with drugcandidate targets to obtain direct targets of action. After constructing the protein interaction networks between IPF subgroup genes and drug candidate targets, we applied the MCODE plug-in to filter the highest-scoring MCODE components. DO, GO, and KEGG enrichment analyses were applied to drug targets, IPF subgroup genes, and MCODE component signature genes. In addition, we downloaded the single-cell dataset GSE157376 from the GEO database. By performing quality control and dimensionality reduction, we clustered the scattered primary sample cells into 11 clusters and annotated them into 2 cell subtypes. Drug sensitivity analysis suggested that SL-EZ acts on different cell subtypes in IPF subgroups. Molecular docking revealed the mode of interaction between targets and their corresponding components. Animal experiments confirmed the efficacy of SL-EZ. CONCLUSION We found SL-EZ acted on epithelial cells mainly through the calcium signaling pathway in the lowly-expressed IPF subtype, while in the highly-expressed IPF subtype, SL-EZ acted on smooth muscle cells mainly through the viral infection, apoptosis, and p53 signaling pathway.
Collapse
Affiliation(s)
- Xianqiang Zhou
- Department of Traditional Chinese Medicine, Jing'an District Central Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Fang Tan
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230031, Anhui Province, China
| | - Suxian Zhang
- Department of Traditional Chinese Medicine, Jing'an District Central Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Tiansong Zhang
- Department of Traditional Chinese Medicine, Jing'an District Central Hospital Affiliated to Fudan University, Shanghai, 200040, China
- Jing'an District Hospital of Traditional Chinese Medicine, Shanghai, 200072, China
| |
Collapse
|
5
|
Khamwut A, Klomkliew P, Jumpathong W, Kaewsapsak P, Chanchaem P, Sivapornnukul P, Chantanakat K, T-Thienprasert NP, Payungporn S. In vitro evaluation of the anti‑breast cancer properties and gene expression profiles of Thai traditional formulary medicine extracts. Biomed Rep 2023; 19:70. [PMID: 37719681 PMCID: PMC10502604 DOI: 10.3892/br.2023.1652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023] Open
Abstract
Breast cancer is a leading cause of cancer-related deaths worldwide. Moreover, standard treatments are limited, so new alternative treatments are required. Thai traditional formulary medicine (TTFM) utilizes certain herbs to treat different diseases due to their dominant properties including anti-fungal, anti-bacterial, antigenotoxic, anti-inflammatory and anti-cancer actions. However, very little is known about the anti-cancer properties of TTFM against breast cancer cells and the underlying molecular mechanism has not been elucidated. Therefore, the present study, evaluated the metabolite profiles of TTFM extracts, the anti-cancer activities of TTFM extracts, their effects on the apoptosis pathway and associated gene expression profiles. Liquid chromatography with tandem mass spectroscopy analysis identified a total of 226 compounds within the TTFM extracts. Several of these compounds have been previously shown to have an anti-cancer effect in certain cancer types. The MTT results demonstrated that the TTFM extracts significantly reduced the cell viability of the breast cancer 4T1 and MDA-MB-231 cell lines. Moreover, an apoptosis assay, demonstrated that the TTFM extracts significantly increased the proportion of apoptotic cells. Furthermore, the RNA-sequencing results demonstrated that 25 known genes were affected by TTFM treatment in 4T1 cells. TTFM treatment significantly up-regulated Slc5a8 and Arhgap9 expression compared with untreated cells. Moreover, Cybb, and Bach2os were significantly downregulated after TTFM treatment compared with untreated cells. Reverse transcription-quantitative PCR demonstrated that TTFM extract treatment significantly increased Slc5a8 and Arhgap9 mRNA expression levels and significantly decreased Cybb mRNA expression levels. Moreover, the mRNA expression levels of Bax and Casp9 were significantly increased after TTFM treatment in 4T1 cells compared with EpH4-Ev cells. These findings indicated anti-breast cancer activity via induction of the apoptotic process. However, further experiments are required to elucidate how TTFM specifically regulates genes and proteins. This study supports the potential usage of TTFM extracts for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Ariya Khamwut
- Program in Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pavit Klomkliew
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Pornchai Kaewsapsak
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pavaret Sivapornnukul
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kridsana Chantanakat
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | | | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Therapeutic Effect of Curcumol on Chronic Atrophic Gastritis (CAG) and Gastric Cancer Is Achieved by Downregulating SDF-1α/CXCR4/VEGF Expression. JOURNAL OF ONCOLOGY 2022; 2022:3919053. [PMID: 36131788 PMCID: PMC9484916 DOI: 10.1155/2022/3919053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
CAG is an essential procession of the transformation from gastritis into gastric cancer. A series of timely moves of diagnosis, treatment, and monitoring towards CAG to anticipate the potential population at risk of gastric cancer is an effective means to prevent gastric cancer occurrence. The main active monomer in Fuzheng Huowei Decoction is Curcumol, which is an indispensable ingredient in the treatment to CAG and gastric cancer. In this study, the CAG model, in vitro cultured gastric cancer cells, and participating nude mice were treated with Curcumol, and alterations in SDF-1α/CXCR4/VEGF expression were estimated using the assays of immunohistochemistry and Western blot. MTT, flow cytometry, transwell, HE staining, and tumor volume determination were applied for the verification of the regulatory effects of Curcumol on CAG and gastric cancer cells. The results showed that the expressions of VEGF, SDF-1α, CXCR4, and CD34 decreased in our CAG model with Curcumol treatment. Curcumol is in procession of an inhibitory effect toward the activity, migration, and invasion of gastric cancer cells, and it would also result in gastric cancer cells' apoptosis. We subsequently added SDF-1α overexpressing lentivirus to the Curcumol-treated group and found that the expressions of SDF-1α, CXCR4, and VEGF protein increased, and the inhibitory effect of Curcumol on gastric cancer cells was withdrawn. Our nude mouse experiment showed that Curcumol + SDF-1α group ended up with the largest tumor volume, while Fuzheng Huowei + NC group was with the smallest tumor volume. In conclusion, Curcumol is able to effectively protect the gastric tissue and suppress gastric cancer cells' viability. Curcumol functions as a therapeutic factor in chronic atrophic gastritis and gastric cancer by downregulating SDF-1α/CXCR4/VEGF expression.
Collapse
|
7
|
Identification of Molecular Targets and Underlying Mechanisms of Xiaoji Recipe against Pancreatic Cancer Based on Network Pharmacology. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4640849. [PMID: 36118824 PMCID: PMC9477627 DOI: 10.1155/2022/4640849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Traditional Chinese medicine (TCM) is applied in the anticancer adjuvant therapy of various malignancies and pancreatic cancer included. Xiaoji recipe consists several TCM materials with anticancer activities. In our work, we intended to analyze the molecular targets as well as the underlying mechanisms of Xiaoji recipe against pancreatic cancer. A total of 32 active components and 522 potential targets of Xiaoji recipe were selected using the TCMSP and SwissTargetPrediction databases. The potential target gene prediction in pancreatic cancer was performed using OMIM, Disgenet, and Genecards databases, and totally, 998 target genes were obtained. The component-disease network was constructed using the Cytoscape software, and 116 shared targets of pancreatic cancer and Xiaoji recipe were screened out. As shown in the protein–protein interaction (PPI) network, the top 20 hub genes such as TP53, HRAS, AKT1, VEGFA, STAT3, EGFR, and SRC were further selected by degree. GO and KEGG functional enrichment analysis revealed that Xiaoji recipe may affect pancreatic cancer progression by targeting the PI3K/AKT and MAPK signaling pathways. Moreover, we performed in vitro assays to explore the effect of Xiaoji recipe on pancreatic cancer cells. The results revealed that Xiaoji recipe suppressed the viability and migration and promoted the apoptosis of pancreatic cancer cells via the inactivation of PI3K/AKT, MAPK, and STAT3 pathways. The findings of our study suggested the potential of Xiaoji recipe in the targeting therapy of pancreatic cancer.
Collapse
|
8
|
Liu F, Liang Y, Sun R, Yang W, Liang Z, Gu J, Zhao F, Tang D. Astragalus mongholicus Bunge and Curcuma aromatica Salisb. inhibits liver metastasis of colon cancer by regulating EMT via the CXCL8/CXCR2 axis and PI3K/AKT/mTOR signaling pathway. Chin Med 2022; 17:91. [PMID: 35922850 PMCID: PMC9351103 DOI: 10.1186/s13020-022-00641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the most challenging aspects of colon cancer (CC) prognosis and treatment is liver-tropic metastasis. Astragalus mongholicus Bunge-Curcuma aromatica Salisb. (AC) is a typical medication combination for the therapy of many malignancies. Our previous studies found that AC intervention inhibits liver metastasis of colon cancer (LMCC). Nevertheless, the comprehensive anti-metastasis mechanisms of AC have not been uncovered. METHODS In bioinformatics analysis, RNA-seq data of CC and LMCC patients were collected from TCGA and GEO databases, and differentially expressed genes (DEGs) were identified. The biological processes and signaling pathways involved in DEGs were enriched by GO and KEGG. The protein-protein interaction (PPI) network of DEGs was established and visualized using the Cytocape software, followed by screening Hub genes in the PPI network using Degree value as the criterion. Subsequently, the expression and survival relevance of Hub gene in COAD patients were verified. In the experimental study, the effects of AC on the inhibition of colon cancer growth and liver metastasis were comprehensively evaluated by cellular and animal models. Finally, based on the results of bioinformatics analysis, the possible mechanisms of AC inhibition of colon cancer EMT and liver metastasis were explored by in vivo and in vitro pharmacological experiments. RESULTS In this study, we obtained 2386 DEGs relevant to LMCC from the COAD (colon adenocarcinoma) and GSE38174 datasets. Results of GO gene function and KEGG signaling pathway enrichment analysis suggested that cellular EMT (Epithelial-mesenchymal transition) biological processes, Cytokine-cytokine receptor interaction and PI3K/Akt signaling pathways might be closely related to LMCC mechanism. We then screened for CXCL8, the core hub gene with the highest centrality within the PPI network of DEGs, and discovered that CXCL8 expression was negatively correlated with the prognosis of COAD patients. In vitro and in vivo experimental evidence presented that AC significantly inhibited colon cancer cell proliferation, migration and invasion ability, and suppressed tumor growth and liver metastasis in colon cancer orthotopic transplantation mice models. Concomitantly, AC significantly reduced CXCL8 expression levels in cell supernatants and serum. Moreover, AC reduced the expression and transcription of genes related to the PI3K/AKT pathway while suppressing the EMT process in colon cancer cells and model mice. CONCLUSIONS In summary, our research predicted the potential targets and pathways of LMCC, and experimentally demonstrated that AC might inhibit the growth and liver metastasis in colon cancer by regulating EMT via the CXCL8/CXCR2 axis and PI3K/AKT/mTOR signaling pathway, which may facilitate the discovery of mechanisms and new therapeutic strategies for LMCC.
Collapse
Affiliation(s)
- Fuyan Liu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Liang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruolan Sun
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weicheng Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongqing Liang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junfei Gu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fan Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Decai Tang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
9
|
Gu J, Sun R, Tang D, Liu F, Chang X, Wang Q. Astragalus mongholicus Bunge-Curcuma aromatica Salisb. suppresses growth and metastasis of colorectal cancer cells by inhibiting M2 macrophage polarization via a Sp1/ZFAS1/miR-153-3p/CCR5 regulatory axis. Cell Biol Toxicol 2022; 38:679-697. [PMID: 35072892 DOI: 10.1007/s10565-021-09679-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is regarded as one of the commonest cancer types around the world. Due to the poor understanding on the causes of CRC formation and progression, this study sets out to investigate the physiological mechanisms by which Astragalus mongholicus Bunge-Curcuma aromatica Salisb. (ARCR) regulates CRC growth and metastasis, and the role in which M2 macrophage polarization plays in this process. An orthotopic-transplant model of CRC was established to evaluate the influence of ARCR on the polarization of M2 macrophage and the growth and metastasis of tumors. Next, the binding affinity among Sp1, ZFAS1, miR-153-5p, and CCR5 was identified using multiple assays. Finally, after co-culture of bone marrow-derived macrophages (BMDM) with CRC cell line CT26.WT, the cell proliferative, invasive, and migrated abilities were assessed in gain- or loss-of-function experiments. ARCR inhibited the infiltration of M2 macrophages into tumor microenvironment to suppress the CRC growth and metastasis in vivo. Additionally, ARCR inhibited the transcription of ZFAS1 by reducing Sp1 expression to repress M2 macrophage polarization. Moreover, ZFAS1 competitively binds to miR-153-3p to upregulate the CCR5 expression. Finally, ARCR suppressed the polarization of M2 macrophages to inhibit the tumor growth and tumor metastasis in CRC by mediating the Sp1/ZFAS1/miR-153-3p/CCR5 regulatory axis. Collectively, ARCR appears to suppress the CRC cell growth and metastasis by suppressing M2 macrophage polarization via Sp1/ZFAS1/miR-153-3p/CCR5 regulatory axis. 1. ARCR suppress the CRC cell growth and metastasis 2. ZFAS1 promotes CCR5 expression by competitively binding to miR-153-3p. 3. Sp1 promotes M2 macrophage polarization by activating ZFAS1 via miR-153-3p/CCR5. 4. The study unveiled a protective target against CRC.
Collapse
Affiliation(s)
- Junfei Gu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138# Xianlin Road, Qixia District, Nanjing, 210023, Jiangsu Province, China
| | - Ruolan Sun
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138# Xianlin Road, Qixia District, Nanjing, 210023, Jiangsu Province, China
| | - Decai Tang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138# Xianlin Road, Qixia District, Nanjing, 210023, Jiangsu Province, China
| | - Fuyan Liu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138# Xianlin Road, Qixia District, Nanjing, 210023, Jiangsu Province, China
| | - Xiangwei Chang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Qiaohan Wang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138# Xianlin Road, Qixia District, Nanjing, 210023, Jiangsu Province, China.
| |
Collapse
|
10
|
Zhang R, Pan T, Xiang Y, Zhang M, Xie H, Liang Z, Chen B, Xu C, Wang J, Huang X, Zhu Q, Zhao Z, Gao Q, Wen C, Liu W, Ma W, Feng J, Sun X, Duan T, Lai-Han Leung E, Xie T, Wu Q, Sui X. Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis. Bioact Mater 2022; 13:23-36. [PMID: 35224289 PMCID: PMC8843976 DOI: 10.1016/j.bioactmat.2021.11.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 02/09/2023] Open
Abstract
Curcumenol, an effective ingredient of Wenyujin, has been reported that exerted its antitumor potential in a few cancer types. However, the effect and molecular mechanism of curcumenol in lung cancer are largely unknown. Here, we found that curcumenol induced cell death and suppressed cell proliferation in lung cancer cells. Next, we demonstrated that ferroptosis was the predominant method that contributed to curcumenol-induced cell death of lung cancer in vitro and vivo for the first time. Subsequently, using RNA sequencing, we found that the long non-coding RNA H19 (lncRNA H19) was significantly downregulated in lung cancer cells treated with curcumenol, when compared to untreated controls. Overexpression of lncRNA H19 eliminated the anticancer effect of curcumenol, while lncRNA H19 knockdown promoted ferroptosis induced by curcumenol treatment. Mechanistically, we showed that lncRNA H19 functioned as a competing endogenous RNA to bind to miR-19b-3p, thereby enhanced the transcription activity of its endogenous target, ferritin heavy chain 1 (FTH1), a marker of ferroptosis. In conclusion, our data show that the natural product curcumenol exerted its antitumor effects on lung cancer by triggering ferroptosis, and the lncRNA H19/miR-19b-3p/FTH1 axis plays an essential role in curcumenol-induced ferroptotic cell death. Therefore, our findings will hopefully provide a valuable drug for treating lung cancer patients. Curcumenol exhibited its anticancer activity by triggering ferroptosis both in vitro and in vivo. Loss of lncRNA H19 leads to ferroptotic cell death in lung cancer. LncRNA H19 plays an important role in curcumenol-induced ferroptotic cell death in lung cancer. Curcumenol induced ferroptosis through a ceRNA network based on lncRNA H19/miR-19b-3p/FTH1 axis.
Collapse
|
11
|
Huang X, Rehman HM, Szöllősi AG, Zhou S. Network Pharmacology-Based Approach Combined with Bioinformatic Analytics to Elucidate the Potential of Curcumol against Hepatocellular Carcinoma. Genes (Basel) 2022; 13:genes13040653. [PMID: 35456457 PMCID: PMC9028201 DOI: 10.3390/genes13040653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Purpose: Modern, open-source databases provide an unprecedented wealth of information to help drug development. By combining data available in these databases with the proper bioinformatical tools, we can elucidate the molecular targets of natural compounds. One such molecule is curcumol, a guaiane-type sesquiterpenoid hemiketal isolated from Rhizoma Curcumae, which is used for a broad range of diseases in traditional Chinese and Indian medicine. It has been reported to exert anti-tumor activity, but the intrinsic molecular mechanism in hepatocellular carcinoma (HCC) is unclear. Therefore, the present study was designed to reveal the predictive targets and biological mechanisms of curcumol against HCC via a network pharmacology-based approach combined with bioinformatic analytics and to provide proof of concept for further similar investigations. Methods: Data available from open-source databases (Traditional Chinese Medicine Systems Pharmacology, Comparative Toxicogenomic Database, The Cancer Genome Atlas, the Human Protein Atlas project) was processed with the help of a variety of open-source tools (SwissADME, SwissTargetPrediction, JVenn, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, GeneMANIA, Cytoscape). Results: In the present study, the potential of curcumol against HCC was unraveled by network pharmacology-based elucidation. It suggests that curcumol shows exciting druggability with 44 potent homo sapiens biotargets against HCC. The GO terms and KEGG pathways enrichment analyses, curcumol-targets-pathways-HCC network, PPI network, and corresponding in-depth topological analyses, as well as survival analysis, molecular docking simulation indicate that the potential mechanism of curcumol against HCC is complicated, as it may act in various ways, mainly by inducing apoptosis and modulating the inflammatory response, increasing presentation of HCC-specific protein. Conclusion: The present study highlights the potential of curcumol against HCC, giving reference to further experimental study. It also presents a roadmap that can be followed to conduct in silico prescreening of other compounds of interest.
Collapse
Affiliation(s)
- Xufeng Huang
- Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary;
| | - Hafiz Muzzammel Rehman
- Alnoorians Group of Institutes 55-Elahi Bukhsh Park, Amir Road, Shad Bagh, Lahore 54000, Pakistan;
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan
| | - Attila Gábor Szöllősi
- Department of Immunology, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence:
| | - Shujing Zhou
- Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
12
|
Doan CC, Le TL, Ho NQC, La THL, Nguyen VC, Le VD, Nguyen TPT, Hoang NS. Bioactive chemical constituents, in vitro anti-proliferative activity and in vivo toxicity of the extract of Curcuma singularis Gagnep rhizomes. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114803. [PMID: 34748866 DOI: 10.1016/j.jep.2021.114803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcuma singularis Gagnep is a Vietnamese medicinal plant which has been commonly used as a medicinal remedy in traditional and folk medicines for improving health as well as for treating some diseases, like rheumatoid arthritis, kidney failure. However, pharmacological effects, including anti-cancer activity and the safety of this plant has not been fully investigated. AIM OF THE STUDY This study aimed to investigate the in vitro anti-growth activity of an extract derived from Curcuma singularis rhizome extract (CSE) against cell lines as well as determine its phytochemical composition. The other goal of our study was to assess the safety of CSE in rats. MATERIALS AND METHODS The main constituents in the extract were identified and quantitatively analyzed. The in vitro cytotoxicity of CSE was evaluated in several cancer and normal cell lines. The apoptotic activity of CSE and the expression of the apoptosis-related genes were investigated in AGS cells to clarify the underlying molecular mechanisms. The in vivo toxicity of CSE was assessed via acute and subacute oral studies on Sprague-Dawley rats, respectively according to the guidelines 425 and 407 of the Organization for Economic Cooperation and Development (OECD). The drug-related toxicity signs, mortality, body and organ weights were recoreded during the experimental period. In addition, the selected hematological and biochemical parameters, and histological alterations were determined at the end of the subacute toxicity test. RESULTS Germacrone, ar-turmerone, and curcumol were three sesquiterpene components found in the extract. CSE showed cytotoxic effects in different cancer cells, but had minimal effects on normal cells. Apoptosis in AGS cells was caused by CSE in a concentration-dependent pattern through increase of Bax/Bcl-2 ratio, and release of cytochrome c, which leads to activation of caspase-3/-7, caspase-9, as well as cleavage of PARP. In the acute toxicity test, no signs of toxicity and no mortality were recorded in rats at both doses of 1000 and 5000 mg/kg. In the subacute toxicity study, CSE showed no drug-related adverse effects on water and food consumption, body and organ weights. CSE at a dose of 1000 mg/kg slightly increased WBC and platelet values in female rats, while it increased WBC values in male rats in all tested doses. The decrease of total cholesterol and triglyceride levels were found in female rats treated CSE at doses of 250 or 500 mg/kg. In addition, the increase of serum ALT and AST levels in rats treated at the dose of 1000 mg/kg were noted. No significant changes in histopathological structures of kidneys, spleen, heart and lungs, except liver tissue with minor modifications was found. CONCLUSIONS Our findings indicated that CSE exhibited in vitro anti-proliferative effects on AGS cells by mainly activating the caspase-dependent mitochondrial apoptotic pathway. CSE also showed in vivo toxicity signals at the dose of 1000 mg/kg with proven minor hepatic injuries, which should be avoided the high dose for prolonged use. Curcuma singularis rhizomes may be used as a chemotherapeutic agent for the treatment of gastric cancer with in vitro anti-cancer investigation and in vivo biological safety evaluation.
Collapse
Affiliation(s)
- Chinh Chung Doan
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam; Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Viet Nam.
| | - Thanh Long Le
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam; Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Viet Nam.
| | - Nguyen Quynh Chi Ho
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam.
| | - Thi Hong Lan La
- Faculty of Pharmacy, Lac Hong University, Bien Hoa City, Viet Nam.
| | | | - Van Dong Le
- Department of Immunology, Vietnam Military Medical University, Ha Noi City, Viet Nam.
| | - Thi Phuong Thao Nguyen
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam; Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Viet Nam.
| | - Nghia Son Hoang
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam; Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Viet Nam.
| |
Collapse
|
13
|
Dong Y, Zhao C, Wang X, Xie M, Zhong X, Song R, Yu A, Wei J, Yao J, Shan D, Lv F, She G. Lvsiyujins A–G, new sesquiterpenoids, from Curcuma phaeocaulis Valeton root tuber and their preliminary pharmacological property assessment based on ADME evaluation, molecular docking and in vitro experiments. NEW J CHEM 2022. [DOI: 10.1039/d2nj00101b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Seven new sesquiterpenoids were isolated from the root tuber of C. phaeocaulis. A combination of calculations and experiments was used in structural analysis and biological activity exploration.
Collapse
Affiliation(s)
- Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Chongjun Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Xiuhuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Meng Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Xiangjian Zhong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Axiang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Jing Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Jianling Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Dongjie Shan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Fang Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| |
Collapse
|
14
|
Van Do TN, Nguyen HX, Le TH, Dang PH, Nguyen MT, Thi Nguyen MT, Nguyen NT. A new diphenylheptanoid from the rhizomes of Curcuma zedoaria. Z NATURFORSCH C 2021; 77:219-223. [PMID: 34787385 DOI: 10.1515/znc-2021-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 11/01/2021] [Indexed: 11/15/2022]
Abstract
A phytochemical investigation of the rhizomes of Curcuma zedoaria was carried out, leading to the isolation of a new diphenylheptanoid, zedoaroxane A (1), together with four known compounds (2-5). Their structures were elucidated based on NMR spectroscopic data. All isolated compounds possessed α-glucosidase inhibitory activity, with the IC50 values ranging from 35.2 to 89.0 µM, more potent than that of the positive control acarbose (IC50, 214.5 µM).
Collapse
Affiliation(s)
- Truong Nhat Van Do
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hai Xuan Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tho Huu Le
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Phu Hoang Dang
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Mai Thanh Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Mai Thanh Thi Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.,Cancer Research Laboratory, University of Science, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nhan Trung Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam.,Cancer Research Laboratory, University of Science, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
15
|
Zhao M, Hao M, Tong H, Su L, Fei C, Gu W, Mao J, Lu T, Mao C. Screening of blood-activating active components from Curcuma wenyujin Y.H. Chen et C. Ling rhizome based on spectrum-effect relationship analysis and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1188:123022. [PMID: 34933255 DOI: 10.1016/j.jchromb.2021.123022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/09/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
Curcuma wenyujin Y.H. Chen et C. Ling rhizome (also called EZhu in China) has long been used as plant medicine for its traditional effect on promoting blood circulation and remove blood stasis. However, the active components of EZhu are still unclear at present. This research is managed to investigate the pharmacodynamics material basis on removing blood stasis of EZhu by exploring the spectrum-effect relationship between UPLC-Q/TOF-MS fingerprints and pharmacologic actions. Hemorheology and related functional parameters were detected to evaluate the pharmacologic actions of EZhu. Relative content Changes of components in rat plasma were detected by UPLC-Q/TOF-MS. A compound-target-pathway network was built to predict the pharmacological activity of components in plasma. Then, bivariate correlation analysis (BCA) was used to explore the correlation degree between components in plasma and pharmacologic actions of EZhu. In UPLC-Q/TOF-MS fingerprints of rat plasma, 10 prototype components were identified. BCA results show that 8 components were concerned with the pharmacological activity for treating blood stasis syndrome (BSS) in varying degrees (R > 0.5, P < 0.05). Among them, zedoarofuran and curzerenone have shown correlation with more pharmacological indicators. The network predicted that 80 targets were closely related to 10 components, in which 48 targets were connected with 159 metabolic pathways including arachidonic acid metabolism, sphingolipid signaling pathway, and linoleic acid metabolism. Overall, this study provided a scientific basis for TCM quality control to ensure its safety and efficacy.
Collapse
Affiliation(s)
- Mengting Zhao
- College of pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou (550025), China; College of pharmacy, Zhejiang Chinese Medical University, Hangzhou (310053), China
| | - Min Hao
- College of pharmacy, Zhejiang Chinese Medical University, Hangzhou (310053), China
| | - Huangjin Tong
- Affiliated hospital of integrated traditional Chinese and western medicine, Nanjing university of Chinese medicine, Nanjing (210028), China; College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China
| | - Lianlin Su
- College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China
| | - Chenghao Fei
- College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China
| | - Wei Gu
- College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China
| | - Jing Mao
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing (210023), China
| | - Tulin Lu
- College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China.
| | - Chunqin Mao
- College of pharmacy, Nanjing University of Chinese medicine, Nanjing (210023), China.
| |
Collapse
|
16
|
Liu XY, Chang YL, Wang XH, Wang Y, Ren XY, Ma JM, Yu AX, Wei J, Fan QQ, Dong Y, Song RL, Yao JL, Shan DJ, She GM. An integrated approach to uncover anti-tumor active materials of Curcumae Rhizoma-Sparganii Rhizoma based on spectrum-effect relationship, molecular docking, and ADME evaluation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114439. [PMID: 34293455 DOI: 10.1016/j.jep.2021.114439] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/01/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcumae Rhizoma-Sparganii Rhizoma (CR-SR), an ancient and classical herbal couple, has been extensively used for tumor treatment in clinic of traditional Chinese medicines (TCMs). AIM OF THE STUDY The study aimed to uncover the anti-tumor active materials of CR-SR water decoction (CR:SR = 1:1) via an integrated approach of spectrum-effect relationship, molecular docking, and ADME evaluation. MATERIALS AND METHODS The anti-tumor activities toward A549, HepG2, Hela, BGC-823, and MCF-7 cells of the different polar elution fractions (DPEFs) of CR, SR, and CR-SR were determined by Cell Counting Kit-8 (CCK-8) assay. Likewise, the DPEFs' combinations of CR and SR were also tested. The chemical fingerprints of these fractions were profiled by HPLC. Meanwhile, HPLC-ESI-Q-TOF-MS/MS was applied for the identification of chemical components. The main effect-related compounds were screened out by spectrum-effect relationship and molecular docking method. The oral bioavailability and druggability of these active components were subsequently evaluated. Finally, five monomeric compounds were validated experimentally using HepG2 cells. RESULTS The 80% ethanol elution fraction of CR, SR, and CR-SR showed strong anti-tumor effects toward five cells. Also, the combinations with the 80% ethanol elution fraction of CR and SR showed stronger tumor inhibition effects among the DPEFs' combinations of CR and SR. By spectrum-effect relationship, HPLC-MS, and molecular docking analysis, 24 main effect-related compounds seemed to have potential anti-tumor effects. ADME evaluation showed rutin performed low oral bioavailability and druggability. Therefore, we suppose that 23 compounds (including 4 unknown compounds) are the primary anti-tumor active components of CR-SR water decoction. Among them, zederone, curcumol, chlorogenic acid, calycosin, and curcumenol were validated successfully with good tumor inhibition effects. CONCLUSIONS In summary, this study demonstrated that the multi-components of CR-SR contribute to its anti-tumor effects. It established a rapid and useful strategy to explore the active material basis of traditional Chinese herbal couples with a multi-technology integrated approach in practice, including chromatography, mass spectrometry, machine algorithm models, online databases, and in vitro cell experiments.
Collapse
Affiliation(s)
- Xiao-Yun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Yan-Li Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Xiu-Huan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Xue-Yang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Jia-Mu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - A-Xiang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Jing Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Qi-Qi Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Ruo-Lan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Jian-Ling Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Dong-Jie Shan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Gai-Mei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| |
Collapse
|
17
|
Tu Y, Wu Q, He J, Xu J, Yu S, Wang Q, Cheng Y, Yang Q, Xu S, Cao Y. Exploring the Potential Molecular Mechanism of Scutellaria baicalensis Georgi in the Treatment of Gastric Cancer Based on Network Pharmacological Analysis and Molecular Docking Technology. Front Pharmacol 2021; 12:697704. [PMID: 34421596 PMCID: PMC8378178 DOI: 10.3389/fphar.2021.697704] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To explore the molecular mechanism of Scutellaria baicalensis Georgi in treating gastric cancer by network pharmacological analysis and molecular docking. Methods: Taking Scutellaria baicalensis Georgi as the object, the active components and corresponding potential drug targets in Scutellaria baicalensis Georgi were obtained from the database of TCM Pharmacological System Analysis Platform (TCMSP). GeneCards/OMIM/DrugBank and other databases were used to collect gastric cancer-related genes, and the obtained genes were intersected with drug targets to obtain the target genes of Scutellaria baicalensis Georgi on gastric cancer. Furthermore, the interaction network of Scutellaria baicalensis Georgi-active ingredients-target-gastric cancer-related genes was constructed. Protein–protein interaction analysis and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed on target genes. The PubChem website was used to screen the compounds corresponding to the target genes, and the target protein and 3D structure pdb format files were obtained from the PDB database. Finally, the molecular docking calculation was performed by the AutoDock Vina program. The in vivo cell experiments on the effect of Scutellaria baicalensis on proliferation and migration of gastric cancer cells were used to determine the therapeutic effect of Scutellaria baicalensis on gastric cancer, and the two genes ESR1 and FOS are the key targets of Scutellaria baicalensis on gastric cancer. Results: A total of 10 gastric cancer-related target genes were screened out, and Scutellaria baicalensis Georgi contained 10 active compounds targeting 10 gene sites. There are 30 effective compounds in Scutellaria baicalensis Georgi targeted to treat gastric cancer, and there are 91 corresponding targeting gene sites, involving a total of 10 pathways. The results of molecular docking show that ESR1, FOS, and Scutellaria baicalensis Georgi have good binding free energy and docking fraction. The docking fraction of FOS is −4.200 and the binding free energy is −27.893 kcal/mol. The docking fraction of ESR1 is −5.833 and the binding free energy is −30.001 kcal/mol. The effect of Scutellaria baicalensis Georgi on gastric cancer was verified by in vitro cell experiments and Western blotting. Conclusion:Scutellaria baicalensis Georgi can target and regulate multiple signal pathways by acting on ESR1 and FOS gene loci, thus having a potential therapeutic effect on gastric cancer.
Collapse
Affiliation(s)
- Yi Tu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Quanli Wu
- School of Public Health, Nanchang University, Nanchang, China
| | - Jiarui He
- School of Public Health, Nanchang University, Nanchang, China
| | - Jiasheng Xu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shasha Yu
- Department of Basic Disciplines, Jiangxi Health Vocational College, Nanchang, China
| | - Qingfei Wang
- Leping Hospital of Traditional Chinese Medicine, Jiangxi Province, Jingdezhen, China
| | - Yunqi Cheng
- Queen Mary College of Nanchang University, Nanchang, China
| | - Qijun Yang
- Queen Mary College of Nanchang University, Nanchang, China
| | - Shan Xu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Gharge S, Hiremath SI, Kagawad P, Jivaje K, Palled MS, Suryawanshi SS. Curcuma zedoaria Rosc (Zingiberaceae): a review on its chemical, pharmacological and biological activities. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00316-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Abstract
Background
Around 80% of human population in the world relies on herbal or phytomedicines for their primary health care needs. The treatment of many diseases and disorders with phytomedicines is considered and observed as very safe with no or minimal side effects. Many medicinal plants and their preparations are practised at home as remedies for treating and preventing various diseases and disorders. For example, medicinal plants and their crude parts such as tulsi, neem, turmeric and ginger are used to cure or treat several common ailments, out of which Curcuma zedoaria Rosc commonly known as white turmeric is one of the important crude drugs belonging to Zingiberaceae family and genus Curcuma. Traditionally, it has been reported to possess many biological activities been used for many therapeutic actions due to the presence of wide range of phytoconstituents in it. The main objectives of the present work are to carry out extensive review on its chemical, pharmacological and biological activities of plant.
Main body
In the present review article, extensive data on its chemical, pharmacological and biological activities have been collected from various online sources including indexing sites such as Web of Science, Scopus, PubMed and Research Gate and presented. Various articles published in indexed journals and other databases have been collected and reviewed systematically.
Conclusion
The present review investigation is very much helpful for researchers and readers to collectively have valuable information on chemistry, pharmacology and biological effects of Curcuma zedoaria Rosc. The present investigation concludes that the white turmeric is found to possess complex range of phytoconstituents such as curcumin, ethyl p-methoxycinnamate, β-turmerone, β-eudesmol, zingiberene, dihydrocurcumin, furanodiene, α-phellandrene, 1–8 cineole, β-elemense and germacrone. Due to the presence of wide range of phytoconstituents, plants have been reported for its diverse biological activities.
Collapse
|
19
|
Bioactive compounds and antioxidant, antimicrobial and cytotoxic activities of extracts of Curcuma longa. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Lee YH, Yoon SY, Baek J, Kim SJ, Yu JS, Kang H, Kang KS, Chung SJ, Kim KH. Metabolite Profile of Cucurbitane-Type Triterpenoids of Bitter Melon (Fruit of Momordica charantia) and Their Inhibitory Activity against Protein Tyrosine Phosphatases Relevant to Insulin Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1816-1830. [PMID: 33406828 DOI: 10.1021/acs.jafc.0c06085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Qualitative analysis of cucurbitane-type triterpenoids of bitter melon (fruit of Momordica charantia L.) using ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry revealed 27 promising cucurbitane-type triterpenoids, and LC/MS-guided chemical analysis of M. charantia fruit extract led to the isolation and structural characterization of 22 cucurbitane-type triterpenoids (1-22), including 8 new cucurbitane-type triterpenoidal saponins, yeojoosides A-H (1-8). The structures of the new compounds (1-8) were elucidated by spectroscopic methods, including 1D and 2D NMR and high-resolution electrospray ionization mass spectrometry. Their absolute configurations were assigned by quantum chemical electronic circular dichroism calculations, chemical reactions, and DP4+ analysis using gauge-including atomic orbital NMR chemical shift calculations. All isolated compounds (1-22) were examined for inhibitory activity against protein tyrosine phosphatases relevant to insulin resistance. Nine compounds (7, 8, 9, 11, 14, 15, 19, 20, and 21) showed selective inhibitory effects of over 70% against PTPN2. The present results suggested that these compounds would be potential antidiabetic agents.
Collapse
Affiliation(s)
- Yong Hoon Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sun-Young Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Cosmetic Science, Kwangju Women's University, Gwangju 62396, Korea
| | - Jiyun Baek
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Sung Jin Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Heesun Kang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
21
|
Kim KM, Lee JY, Jeon BH, Quan KT, Na M, Nam KW, Chae S. Extract of Curcuma zedoaria R. prevents atherosclerosis in apolipoprotein E-deficient mice. Nutr Res Pract 2021; 15:319-328. [PMID: 34093973 PMCID: PMC8155225 DOI: 10.4162/nrp.2021.15.3.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/03/2020] [Accepted: 12/20/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/OBJECTIVES Curcuma zedoaria R. (Zingiberaceae) has been used to treat headache, fever, and hypertension-related symptoms in Asian countries, including Korea, China, and Japan. We investigated whether dietary intake of a C. zedoaria extract (CzE) affected atherosclerosis in vivo. MATERIALS/METHODS Apolipoprotein E-deficient (ApoE−/−) mice (n = 32) were fed a normal diet (ND), a high-cholesterol diet (HCD), an HCD containing CzE (100 mg/kg/day), or an HCD containing simvastatin (10 mg/kg/day) for 12 weeks. The anti-atherosclerotic effects were evaluated by observing changes in fatty streak lesions, immunohistochemical analysis, ex vivo fluorescence imaging, lipid profiles, and western blot analysis. RESULTS The CzE-fed group showed a 41.6% reduction of atherosclerosis. Furthermore, CzE significantly reduced the levels of serum triglyceride, high-density lipoprotein, the chemokine (C-X3-C-motif) ligand 1, the adhesion molecules vascular cell adhesion molecule-1, intracellular adhesion molecule-1, and E-selectin; down-regulation of tumor necrosis factor-α, interleukin-6, high mobility group box-1, and cathepsin levels in the aortic sinuses and aortas of ApoE−/− mice were also observed. CONCLUSIONS The results suggest that the inclusion of a water extract of C. zedoaria in a HCD is closely correlated with reducing the risk of vascular inflammatory diseases in an ApoE mouse model.
Collapse
Affiliation(s)
- Ki Mo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.,Department of Korean Life Science and Technology, University of Science and Technology, Daejeon 34113, Korea
| | - Joo Young Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Byeong Hwa Jeon
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Khong Trong Quan
- Department of Pharmacognosy, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - MinKyun Na
- Department of Pharmacognosy, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Kung-Woo Nam
- Department of Life Science and Biotechnology, Soonchunhyang University, Asan 31538, Korea
| | - Sungwook Chae
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.,Department of Korean Life Science and Technology, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
22
|
Lee S, Yu JS, Phung HM, Lee JG, Kim KH, Kang KS. Potential Anti-Skin Aging Effect of (-)-Catechin Isolated from the Root Bark of Ulmus davidiana var. japonica in Tumor Necrosis Factor-α-Stimulated Normal Human Dermal Fibroblasts. Antioxidants (Basel) 2020; 9:antiox9100981. [PMID: 33066025 PMCID: PMC7601800 DOI: 10.3390/antiox9100981] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 12/27/2022] Open
Abstract
Reactive oxygen species (ROS) are generated during skin aging, including intrinsic (chronologic aging) and extrinsic aging (photoaging). Therefore, antioxidants that inhibit ROS generation can delay skin aging. In this study, we evaluated the potential anti-skin aging effect of (-)-phenolic compounds isolated from the root bark of Ulmus davidiana var. japonica. We preferentially investigated the possible preventive effects of isolates against the degradation of skin extracellular matrix. Among the isolates, (-)-catechin suppressed the activity of collagenase MMP-1, and reversed the degradation of collagen induced by tumor necrosis factor-α (TNF-α) in normal human dermal fibroblast. This action mechanism of (-)-catechin was validated by the suppression of tumor necrosis factor-α-induced accumulation of ROS and activation of mitogen-activated protein kinases, protein kinase B (Akt), and cyclooxygenase-2 (COX-2). The proinflammatory cytokines upregulate inflammatory reactions, and ultimately promote aging-related reactions. In this milieu, we demonstrated that (-)-catechin decreased the expression and secretion of proinflammatory cytokines, including interleukin (IL)-1β and IL-6. In conclusion, (-)-catechin is a candidate to ameliorate both intrinsic and extrinsic skin aging.
Collapse
Affiliation(s)
- Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Korea;
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Hung Manh Phung
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Jeong Gun Lee
- S-Skin Co., Ltd., #220, 17, Daehak 4-ro, Suwon 16226, Korea;
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (K.H.K.); (K.S.K.); Tel.: +82-31-290-7700 (K.H.K.); +82-31-750-5402 (K.S.K.); Fax: +82-31-750-5416 (K.S.K.)
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
- Correspondence: (K.H.K.); (K.S.K.); Tel.: +82-31-290-7700 (K.H.K.); +82-31-750-5402 (K.S.K.); Fax: +82-31-750-5416 (K.S.K.)
| |
Collapse
|
23
|
Baek SC, Lee BS, Yi SA, Lee J, Kim KH. Carthamusuchuric acid, an enolic glucoside of phenylpyruvic acid from the florets of Carthamus tinctorius and anti-adipogenic phenolic compounds. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
25
|
Ning N, Liu S, Liu X, Tian Z, Jiang Y, Yu N, Tan B, Feng H, Feng X, Zou L. Curcumol inhibits the proliferation and metastasis of melanoma via the miR-152-3p/PI3K/AKT and ERK/NF-κB signaling pathways. J Cancer 2020; 11:1679-1692. [PMID: 32194780 PMCID: PMC7052881 DOI: 10.7150/jca.38624] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the most aggressive and treatment-resistant form of skin cancer. Curcumol is a Chinese medicinal herb traditionally used as a cancer remedy. However, the molecular mechanisms underlying the anticancer activity of curcumol in melanoma remains largely unknown. In the present study, we observed that Curcumol decreased mouse melanoma B16 cell proliferation and migration. The xenograft tumor assay showed that curcumol reduced melanoma volume and lung metastasis. Curcumol upregulated the expression of E-cadherin and downregulated the expression of N-cadherin, MMP2 and MMP9 in mouse melanoma B16 cell. Western blot analysis revealed that curcumol reduced the translocation of p65 to the nucleus and decreased p-ERK. Furthermore, curcumol attenuated c-MET, P13K and p-AKT protein expression and upregulated miR-152-3p gene expression. The dual-luciferase reporter assay indicated that c-MET was a target gene of miR-152-3p. Reduced expression of miR-152-3p partially attenuated the effect of curcumol on mouse melanoma B16 cell proliferation and migration. The decrease in c-MET, P13K and p-AKT protein expression following curcumol treatment in mouse melanoma B16 cells was notably attenuated by the miR-152-3p inhibitor. Taken together, our findings suggested that curcumol attenuated melanoma progression and concomitantly suppressed ERK/NF-κB signaling and promoted miR-152-3p expression to inactivate the c-MET/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Ning Ning
- First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Sulai Liu
- First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China.,Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, Hunan, China.,Hunan Research Center of Biliary Disease, Changsha, Hunan, China
| | - Xiehong Liu
- First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China.,Hunan Provincial Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, China
| | - Zeyu Tian
- First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Yu Jiang
- First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China.,Hunan Provincial Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, China
| | - Nanhui Yu
- First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China.,Hunan Provincial Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, China
| | - Boyu Tan
- First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Hao Feng
- First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China
| | - Xing Feng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Lianhong Zou
- First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, China.,Hunan Provincial Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha, Hunan, China
| |
Collapse
|