1
|
Zhu Y, Chen L, Zeng J, Xu J, Hu H, He X, Wang Y. Six new phenylpropanoids from Kaempferia galanga L. and their anti-inflammatory activity. Fitoterapia 2024; 176:106028. [PMID: 38768796 DOI: 10.1016/j.fitote.2024.106028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Kaempferia galanga L. is an aromatic medicinal plant belonging to the Zingiberaceae family. Its rhizome has been widely used as traditional Chinese medicine and a flavor spice for a long time. In this study, six previously undescribed phenylpropanoids, including four [2+2]-cycloaddition-derived cyclobutane natural products (1-4), and two phenylpropanoids (5-6) were isolated from the rhizomes of K. galanga L. Their structures were elucidated by spectroscopic methods, single-crystal X-ray diffraction, NMR calculation, and ECD spectra calculation. These cyclobutane derivatives were isolated from K. galanga for the first time. Furthermore, compounds 1-6 were evaluated for the potential inhibitory activities on NO production and NF-κB nuclear translocation in LPS-triggered RAW 264.7 macrophages. The results showed that the isolated compounds have a moderate anti-inflammatory activity measured on their potency to inhibit NO production and the expression of iNOS and COX-2. Additionally, compound 2 effectively suppressed NF-κB nuclear translocation at a concentration of 40 μM.
Collapse
Affiliation(s)
- Yunfang Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Lu Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Jia Zeng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Hui Hu
- Humanwell Healthcare Group Co., Ltd, Wuhan 430000, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China.
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China.
| |
Collapse
|
2
|
Hou SY, Yan BC, Sun HD, Puno PT. Recent advances in the application of [2 + 2] cycloaddition in the chemical synthesis of cyclobutane-containing natural products. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:37. [PMID: 38861197 PMCID: PMC11166626 DOI: 10.1007/s13659-024-00457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Cyclobutanes are distributed widely in a large class of natural products featuring diverse pharmaceutical activities and intricate structural frameworks. The [2 + 2] cycloaddition is unequivocally the primary and most commonly used method for synthesizing cyclobutanes. In this review, we have summarized the application of the [2 + 2] cycloaddition with different reaction mechanisms in the chemical synthesis of selected cyclobutane-containing natural products over the past decade.
Collapse
Affiliation(s)
- Song-Yu Hou
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Bing-Chao Yan
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Han-Dong Sun
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Pema-Tenzin Puno
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
3
|
Genzink MJ, Rossler MD, Recendiz H, Yoon TP. A General Strategy for the Synthesis of Truxinate Natural Products Enabled by Enantioselective [2+2] Photocycloadditions. J Am Chem Soc 2023; 145:19182-19188. [PMID: 37603410 PMCID: PMC10528511 DOI: 10.1021/jacs.3c07132] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Pseudodimeric cyclobutanes constitute a large class of natural products that could, in principle, be efficiently synthesized via [2+2] photocycloadditions. However, the difficulty in developing chemo-, regio-, diastereo-, and enantioselective cycloadditions has limited their use in asymmetric syntheses. Herein, we show that chiral acid catalysts promote highly selective visible-light photocycloadditions, the products of which can be quickly transformed into truxinate natural products. This general approach has enabled the synthesis of both dimeric and pseudodimeric cyclobutane natural products with excellent enantioselectivity.
Collapse
Affiliation(s)
- Matthew J. Genzink
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Matthew D. Rossler
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Herman Recendiz
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Tehshik P. Yoon
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Broni E, Striegel A, Ashley C, Sakyi PO, Peracha S, Velazquez M, Bebla K, Sodhi M, Kwofie SK, Ademokunwa A, Khan S, Miller WA. Molecular Docking and Dynamics Simulation Studies Predict Potential Anti-ADAR2 Inhibitors: Implications for the Treatment of Cancer, Neurological, Immunological and Infectious Diseases. Int J Mol Sci 2023; 24:6795. [PMID: 37047766 PMCID: PMC10095294 DOI: 10.3390/ijms24076795] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Altered RNA editing has been linked to several neurodevelopmental disorders, including autism spectrum disorder (ASD) and intellectual disability, in addition to depression, schizophrenia, some cancers, viral infections and autoimmune disorders. The human ADAR2 is a potential therapeutic target for managing these various disorders due to its crucial role in adenosine to inosine editing. This study applied consensus scoring to rank potential ADAR2 inhibitors after performing molecular docking with AutoDock Vina and Glide (Maestro), using a library of 35,161 compounds obtained from traditional Chinese medicine. A total of 47 compounds were predicted to be good binders of the human ADAR2 and had insignificant toxicity concerns. Molecular dynamics (MD) simulations, including the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) procedure, also emphasized the binding of the shortlisted compounds. The potential compounds had plausible binding free energies ranging from -81.304 to -1068.26 kJ/mol from the MM/PBSA calculations. ZINC000085511995, a naphthoquinone had more negative binding free energy (-1068.26 kJ/mol) than inositol hexakisphosphate (IHP) [-873.873 kJ/mol], an agonist and a strong binder of ADAR2. The potential displacement of IHP by ZINC000085511995 in the IHP binding site of ADAR2 could be explored for possible deactivation of ADAR2. Bayesian-based biological activity prediction corroborates the neuropharmacological, antineoplastic and antiviral activity of the potential lead compounds. All the potential lead compounds, except ZINC000014612330 and ZINC000013462928, were predicted to be inhibitors of various deaminases. The potential lead compounds also had probability of activity (Pa) > 0.442 and probability of inactivity (Pi) < 0.116 values for treating acute neurologic disorders, except for ZINC000085996580 and ZINC000013462928. Pursuing these compounds for their anti-ADAR2 activities holds a promising future, especially against neurological disorders, some cancers and viral infections caused by RNA viruses. Molecular interaction, hydrogen bond and per-residue decomposition analyses predicted Arg400, Arg401, Lys519, Trp687, Glu689, and Lys690 as hot-spot residues in the ADAR2 IHP binding site. Most of the top compounds were observed to have naphthoquinone, indole, furanocoumarin or benzofuran moieties. Serotonin and tryptophan, which are beneficial in digestive regulation, improving sleep cycle and mood, are indole derivatives. These chemical series may have the potential to treat neurological disorders, prion diseases, some cancers, specific viral infections, metabolic disorders and eating disorders through the disruption of ADAR2 pathways. A total of nine potential lead compounds were shortlisted as plausible modulators of ADAR2.
Collapse
Affiliation(s)
- Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Andrew Striegel
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Chemical and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Carolyn Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Saqib Peracha
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Miriam Velazquez
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Kristeen Bebla
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Monsheel Sodhi
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Adesanya Ademokunwa
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Cognitive and Behavioral Neuroscience, Loyola University Chicago, Chicago, IL 60660, USA
| | - Sufia Khan
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
5
|
Xi YF, Bai M, Zhang X, Hou ZL, Lin B, Yao GD, Lou LL, Wang XB, Song SJ, Huang XX. Insight into tetrahydrofuran lignans from Isatis indigotica fortune with neuroprotective and acetylcholinesterase inhibitor activity. PHYTOCHEMISTRY 2023; 208:113609. [PMID: 36758886 DOI: 10.1016/j.phytochem.2023.113609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Nine tetrahydrofuran lignans, including three undescribed spiro-lignans, were isolated from Isatis indigotica Fortune (Brassicaceae). Extensive spectroscopic analyses achieved the structure elucidation of these tetrahydrofuran lignans, and quantum chemical calculation combined with the MAEΔΔδ parameter. Notably, isatispironeols A-B have a unique spiro[dienone-tetrahydrofuran] molecular core. These spiro[dienone-tetrahydrofuran] lignans showed comparable neuroprotective effects as the positive control in the H2O2-induced SH-SY5Y cells model. In addition, (-)-(7R,8S,1'R,7'R,8'R)-isatispironeol A possessed more significant AChE inhibitory activity, further interact sites were also predicted by the in silico assay.
Collapse
Affiliation(s)
- Yu-Fei Xi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xin Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zi-Lin Hou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Li-Li Lou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Xiao-Bo Wang
- Chinese People's Liberation Army Logistics Support Force No. 967 Hospital, Dalian, 116021, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
6
|
Zhou WY, Niu JQ, Li Q, Du NN, Li JY, Lin B, Yao GD, Huang XX, Song SJ. Utilization of the By-Product of Corn: Guided Identification of Bioactive Terpenoids from Stigma Maydis (Corn Silk). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3338-3349. [PMID: 36786443 DOI: 10.1021/acs.jafc.2c08452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stigma maydis (corn silk) (S. maydis) is a food-based by-product of maize and possesses great nutritional and pharmaceutical value. This study aimed to explore bioactive components from S. maydis. By the guidance of bioactivity-guided approach and Global Natural Products Social (GNPS) molecular networking, 12 terpenoids were discovered from S. maydis. The structures of 11 undescribed compounds (1-11) were determined by detailed spectroscopic analyses, single-crystal X-ray diffraction analysis, specific rotation calculations, electronic circular dichroism (ECD) calculations, and NMR calculations. The neuroprotective and acetylcholinesterase (AChE) inhibitory effects of 1-12 were examined, and most of them showed significant or moderate activities. The underlying neuroprotective mechanism of 4 and 5 was revealed by Hoechst 33258, AO-EB, and JC-1 staining assays. This work illustrated the potential of S. maydis as a prospective natural source of bioactive compounds in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Wei-Yu Zhou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jia-Qi Niu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qian Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ning-Ning Du
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jia-Yi Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
7
|
Yang P, Jia Q, Song S, Huang X. [2 + 2]-Cycloaddition-derived cyclobutane natural products: structural diversity, sources, bioactivities, and biomimetic syntheses. Nat Prod Rep 2023. [DOI: 10.1039/d2np00034b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes the structural diversity, bioactivities, and biomimetic synthesis of [2 + 2]-type cyclobutane natural products, along with discussion of their biosynthesis, stereochemical analysis, racemic occurrence, and biomimetic synthesis.
Collapse
Affiliation(s)
- Peiyuan Yang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qi Jia
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shaojiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiaoxiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
8
|
Liu DF, Bai M, Du NN, Shen S, Li ZY, Zhang X, Guo R, Yao GD, Song SJ, Huang XX. Insight into Isolation and Characterization of Phenolic Compounds from Hawthorn (Crataegus pinnatifida Bge.) with Antioxidant, Anti-Acetylcholinesterase, and Neuroprotective Activities. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:538-544. [PMID: 35986175 DOI: 10.1007/s11130-022-01004-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Recent epidemiologic studies have demonstrated a link between the consumption of daily functional fruits rich in phenols and the prevention of disease for neurodegenerative disorders. Hawthorn products are derived from the functional fruit hawthorn, which is rich in phenols and has been used around the world for centuries. In order to explore the phenolic components in hawthorn, the investigation of the ethanol extract led to the separation of five new phenol compounds (1a/1b, 2-4), including one pair of enantiomers (1a/1b), along with seven disclosed analogs (5-11). Their structures were elucidated based on extensive spectroscopic analyses and electronic circular dichroism (ECD). The compounds (1-11) were tested for antioxidant activities by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) (ABTS), and ferric reducing antioxidant power (FRAP) methods. Apart from that, monomeric compounds 2, 4, and 6 exhibited more potent protective capabilities against H2O2 (hydrogen peroxide)-induced SH-SY5Y cells. Meanwhile, electronic analyses were performed using the highest occupied molecular orbital (HOMO), and the lowest unoccupied molecular orbital (LUMO) to analyze compounds 2, 4, and 6. Furthermore, compounds (1-11) measured acetylcholinesterase (AChE) inhibitory activities, and 2, 4, and 6 possessed greater AChE inhibitory activity than donepezil. At the same time, molecular docking was used to investigate the possible mechanism of the interaction between active compounds (2, 4, and 6) and AChE.
Collapse
Affiliation(s)
- De-Feng Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang, 110016, Liaoning Province, China
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Shenyang, 110016, Liaoning Province, China
- Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, 110016, Liaoning, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang, 110016, Liaoning Province, China
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Shenyang, 110016, Liaoning Province, China
- Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, 110016, Liaoning, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Ning-Ning Du
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang, 110016, Liaoning Province, China
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Shenyang, 110016, Liaoning Province, China
- Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, 110016, Liaoning, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Shuai Shen
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang, 110016, Liaoning Province, China
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Shenyang, 110016, Liaoning Province, China
- Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, 110016, Liaoning, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Zhi-Yuan Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang, 110016, Liaoning Province, China
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Shenyang, 110016, Liaoning Province, China
- Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, 110016, Liaoning, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Xin Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang, 110016, Liaoning Province, China
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Shenyang, 110016, Liaoning Province, China
- Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, 110016, Liaoning, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Rui Guo
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang, 110016, Liaoning Province, China
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Shenyang, 110016, Liaoning Province, China
- Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, 110016, Liaoning, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang, 110016, Liaoning Province, China
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Shenyang, 110016, Liaoning Province, China
- Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, 110016, Liaoning, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang, 110016, Liaoning Province, China
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Shenyang, 110016, Liaoning Province, China
- Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, 110016, Liaoning, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang, 110016, Liaoning Province, China.
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Shenyang, 110016, Liaoning Province, China.
- Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, 110016, Liaoning, China.
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
9
|
Wang LX, Wang HL, Huang J, Chu TZ, Peng C, Zhang H, Chen HL, Xiong YA, Tan YZ. Review of lignans from 2019 to 2021: Newly reported compounds, diverse activities, structure-activity relationships and clinical applications. PHYTOCHEMISTRY 2022; 202:113326. [PMID: 35842031 DOI: 10.1016/j.phytochem.2022.113326] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Lignans, with various biological activities, such as antitumor, antioxidant, antibacterial, and antiviral activities, are widely distributed in nature and mainly exist in the xylem of plants. In this paper, we summarized the structures and bioactivities of lignans reported in recent years (2019-2021) from five parts, including (1) a summary and classification of newly reported compounds; (2) the pharmacological activities of lignans; (3) molecular resources and activity distribution; (4) the structure-activity relationships; and (5) the clinical application of lignans. This review covers all undescribed compounds that were reported within the covered period of time and all bioactivity data about previously isolated lignans. The distribution of lignans in different plants and families is visualized, which improves the efficiency of searching for specific molecules. The diverse activities of different types of lignans provide an important reference for the rapid screening of these compounds. Discussion about the structure-activity relationships of lignans provides a direction for the structural modification of skeleton molecules. Combined with the clinical application of such molecules, this work will provide a valuable reference for pharmaceutical chemists.
Collapse
Affiliation(s)
- Li-Xia Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Liang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiao Huang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Tian-Zhe Chu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hai Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hu-Lan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yong-Ai Xiong
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Yu-Zhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
10
|
Atukuri D, M R, M C, T A, Mujavar PH. Recent Update on the Pharmacological Significance of Isatis tinctoria L. (Brassicaceae) Extracts. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1886126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Dorababu Atukuri
- SRMPP Govt. First Grade College, Huvinahadagali, Karnataka, India
| | - Rashmi M
- SRMPP Govt. First Grade College, Huvinahadagali, Karnataka, India
| | - Chandrashekhar M
- SRMPP Govt. First Grade College, Huvinahadagali, Karnataka, India
| | - Afreen T
- SRMPP Govt. First Grade College, Huvinahadagali, Karnataka, India
| | | |
Collapse
|
11
|
Tan Y, Yang J, Jiang Y, Wang J, Liu Y, Zhao Y, Jin B, Wang X, Chen T, Kang L, Guo J, Cui G, Tang J, Huang L. Functional Characterization of UDP-Glycosyltransferases Involved in Anti-viral Lignan Glycosides Biosynthesis in Isatis indigotica. FRONTIERS IN PLANT SCIENCE 2022; 13:921815. [PMID: 35774804 PMCID: PMC9237620 DOI: 10.3389/fpls.2022.921815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 06/02/2023]
Abstract
Isatis indigotica is a popular herbal medicine with its noticeable antiviral properties, which are primarily due to its lignan glycosides such as lariciresinol-4-O-β-D-glucoside and lariciresinol-4,4'-bis-O-β-D-glucosides (also called clemastanin B). UDP-glucose-dependent glycosyltransferases are the key enzymes involved in the biosynthesis of these antiviral metabolites. In this study, we systematically characterized the UGT72 family gene IiUGT1 and two UGT71B family genes, IiUGT4 and IiUGT71B5a, with similar enzymatic functions. Kinetic analysis showed that IiUGT4 was more efficient than IiUGT1 or IiUGT71B5a for the glycosylation of lariciresinol. Further knock-down and overexpression of these IiUGTs in I. indigotica's hairy roots indicates that they play different roles in planta: IiUGT71B5a primarily participates in the biosynthesis of coniferin not pinoresinol diglucoside, and IiUGT1 primarily participates in the biosynthesis of pinoresinol diglucoside, while IiUGT4 is responsible for the glycosylation of lariciresinol and plays a dominant role in the biosynthesis of lariciresinol glycosides in I. indigotica. Analysis of the molecular docking and site-mutagenesis of IiUGT4 have found that key residues for its catalytic activity are H373, W376, E397, and that F151 could be associated with substrate preference. This study elucidates the biosynthetic route of anti-viral lignan glycosides in I. indigotica, and provides the foundation for the production of anti-viral lignan glycosides via synthetic biology under the heterologous model.
Collapse
Affiliation(s)
- Yuping Tan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Yang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yinyin Jiang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yahui Liu
- National Institute of Metrology, Beijing, China
| | - Yujun Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Tong Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Kang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Yu JH, Yu ZP, Capon RJ, Zhang H. Natural Enantiomers: Occurrence, Biogenesis and Biological Properties. Molecules 2022; 27:1279. [PMID: 35209066 PMCID: PMC8880303 DOI: 10.3390/molecules27041279] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
The knowledge that natural products (NPs) are potent and selective modulators of important biomacromolecules (e.g., DNA and proteins) has inspired some of the world's most successful pharmaceuticals and agrochemicals. Notwithstanding these successes and despite a growing number of reports on naturally occurring pairs of enantiomers, this area of NP science still remains largely unexplored, consistent with the adage "If you don't seek, you don't find". Statistically, a rapidly growing number of enantiomeric NPs have been reported in the last several years. The current review provides a comprehensive overview of recent records on natural enantiomers, with the aim of advancing awareness and providing a better understanding of the chemical diversity and biogenetic context, as well as the biological properties and therapeutic (drug discovery) potential, of enantiomeric NPs.
Collapse
Affiliation(s)
- Jin-Hai Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (J.-H.Y.); (Z.-P.Y.)
| | - Zhi-Pu Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (J.-H.Y.); (Z.-P.Y.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Hua Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
13
|
Oxylipin vanillyl acetals from Solanum lyratum. Fitoterapia 2020; 143:104559. [DOI: 10.1016/j.fitote.2020.104559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/17/2022]
|
14
|
Xi YF, Lou LL, Han FY, Liu SF, Yao GD, Lin B, Huang XX, Wang XB, Song SJ. Four pairs of alkaloid enantiomers from Isatis indigotica Fortune Ex Land with neuroprotective effects against H 2O 2-induced SH-SY5Y cell injury. Bioorg Chem 2020; 96:103650. [PMID: 32044515 DOI: 10.1016/j.bioorg.2020.103650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 01/07/2023]
Abstract
In the current study, four pairs of new enantiomeric alkaloids (1a/1b-4a/4b) were obtained from the leaves of Isatis indigotica Fortune Ex Land. Their structures were elucidated through spectroscopic methods and quantum mechanical calculations. Biologically, all isolates were evaluated for their neuroprotective effects against H2O2-induced SH-SY5Y cell injury. As a result, 1a and 1b exhibited enantioselective neuroprotective effects, further Annexin V-FITC/PI analysis showed that apoptosis ratios of 1a and 1b were reduced to 20.93% and 17.87%, respectively.
Collapse
Affiliation(s)
- Yu-Fei Xi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Li-Li Lou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Chinese People's Liberation Army Logistics Support Force No.967 Hospital, Dalian 116021, People's Republic of China
| | - Feng-Ying Han
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Si-Fan Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Bo Wang
- Chinese People's Liberation Army Logistics Support Force No.967 Hospital, Dalian 116021, People's Republic of China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|