1
|
Caprifico AE, Vaghi L, Spearman P, Calabrese G, Papagni A. In vitro detection of cancer cells using a novel fluorescent choline derivative. BMC Med Imaging 2024; 24:316. [PMID: 39567942 PMCID: PMC11580358 DOI: 10.1186/s12880-024-01488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
INTRODUCTION The treatment of preinvasive lesions is more effective than treating invasive disease, hence detecting cancer at its early stages is crucial. However, currently, available screening methods show various limitations in terms of sensitivity, specificity, and practicality, thus novel markers complementing traditional cyto/histopathological assessments are needed. Alteration in choline metabolism is a hallmark of many malignancies, including cervical and breast cancers. Choline radiotracers are widely used for imaging purposes, even though many risks are associated with their radioactivity. Therefore, this work aimed to synthesise and characterise a non-radioactive choline tracer based on a fluorinated acridine scaffold (CFA) for the in vitro detection of cervical and breast cancer cells by fluorescence imaging. METHODS CFA was fully characterised and tested for its cytotoxicity on breast (MCF-7), cervical (HeLa), glioblastoma (U-87 MG) and hepatoblastoma (HepG2) cancer cell lines and in normal cell lines (epithelial, HEK-293 and human dermal fibroblasts, HDFs). The cellular uptake of CFA was investigated by a confocal microscope and its accumulation was quantified over time. The specificity of CFA over mesenchymal origin cells (HDFs), as a model of cancer-associated fibroblasts was investigated by fluorescence microscopy. RESULTS CFA was toxic at much higher concentrations (HeLa IC50 = 200 ± 18 µM and MCF-7 IC50 = 105 ± 3 µM) than needed for its detection in cancer cells (5 µM). CFA was not toxic in the other cell lines tested. The intensity of CFA in breast and cervical cancer cells was not significantly different at any time point, yet it was greater than HepG2 and U-87 MG (p ≤ 0.01 and p ≤ 0.0001, respectively) after 24 h incubation. A very weak signal intensity was recorded in HEK-293 and HDFs (p ≤ 0.001 and p ≤ 0.0001, respectively). A selective ability of CFA to accumulate in HeLa and MCF-7 was recorded upon co-culture with fibroblasts. CONCLUSIONS The results showed that CFA preferentially accumulated in cancer cells rather than in normal cells. These findings suggest that CFA may be a potential diagnostic probe for discriminating healthy tissues from malignant tissues due to its specific and highly sensitive features; CFA may also represent a useful tool for in vitro/ex vivo investigations of choline metabolism in patients with cervical and breast cancers.
Collapse
Affiliation(s)
- Anna E Caprifico
- School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.
| | - Luca Vaghi
- Department of Material Sciences, University of Milano-Bicocca, Via Roberto Cozzi 55, Milan, 20126, Italy
| | - Peter Spearman
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston Upon Thames, London, KT1 2EE, UK
| | - Gianpiero Calabrese
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston Upon Thames, London, KT1 2EE, UK
| | - Antonio Papagni
- Department of Material Sciences, University of Milano-Bicocca, Via Roberto Cozzi 55, Milan, 20126, Italy
| |
Collapse
|
2
|
Abouelenein MG, Mohamed MBI, Elsenety MM, El-Rashedy AA, Ghalib SH, Mohamed FAE, El-Ebiary NMA, Ageeli AA. Facile and Novel Synthetic Approach, Molecular Docking, Molecular Dynamics, and Drug-Likeness Evaluation of 9-Substituted Acridine Derivatives as Dual Anticancer and Antimicrobial Agents. Chem Biodivers 2024; 21:e202301986. [PMID: 38478727 DOI: 10.1002/cbdv.202301986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024]
Abstract
In the present study, numerous acridine derivatives A1-A20 were synthesized via aromatic nucleophilic substitution (SNAr) reaction of 9-chloroacridine with carbonyl hydrazides, amines, or phenolic derivatives depending upon facile, novel, and eco-friendly approaches (Microwave and ultrasonication assisted synthesis). The structures of the new compounds were elucidated using spectroscopic methods. The title products were assessed for their antimicrobial, antioxidant, and antiproliferative activities using numerous assays. Promisingly, the investigated compounds mainstream revealed promising antibacterial and anticancer activities. Thereafter, the investigated compounds' expected mode of action was debated by using an array of in silico studies. Compounds A2 and A3 were the most promising antimicrobial agents, while compounds A2, A5, and A7 revealed the most cytotoxic activities. Accordingly, RMSD, RMSF, Rg, and SASA analyses of compounds A2 and A3 were performed, and MMPBSA was calculated. Lastly, the ADMET (absorption, distribution, metabolism, excretion, and toxicity) analyses of the novel acridine derivatives were investigated. The tested compounds' existing screening results afford an inspiring basis leading to developing new compelling antimicrobial and anticancer agents based on the acridine scaffold.
Collapse
Affiliation(s)
- Mohamed G Abouelenein
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Koam, Menofia, Egypt
| | | | - Mohamed M Elsenety
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt, P.O., 11884
| | - Ahmed A El-Rashedy
- Natural and Microbial Products Department, National Research Center (NRC), Egypt
| | - Samirah H Ghalib
- Chemistry Department, Faculty of Science, Jazan University, Jazan, P.O. Box, 82817, Saudi Arabia
| | | | - Nora M A El-Ebiary
- Chemistry Department, Faculty of Science, Jazan University, Jazan, P.O. Box, 82817, Saudi Arabia
| | - Abeer A Ageeli
- Chemistry Department, Faculty of Science, Jazan University, Jazan, P.O. Box, 82817, Saudi Arabia
| |
Collapse
|
3
|
Walczak-Nowicka ŁJ, Szopa A, Pitucha M, Serefko A, Pachuta-Stec A, Pawłowski K, Gawrońska-Grzywacz M, Lachowicz J, Herbet M. Newly synthesized derivatives with a thiosemicarbazide group reduce the viability of cancer cell lines. Acute toxicity assessment in Zebrafish (Danio rerio) early life stages. Toxicol In Vitro 2024; 95:105741. [PMID: 38030050 DOI: 10.1016/j.tiv.2023.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Due to the variability and ability of tumor to mutate, as well as the heterogeneity of tumor tissue, such drugs are sought that would act selectively and multidirectionally on the cancer cell. Therefore, two newly synthesized semicarbazide structured substances were evaluated for anticancer properties in our study: 1a and 1b. In order to evaluate the cytotoxicity and selectivity of the tested compounds, MTT and Neutral Red uptake assay on cell lines (HEK293, LN229, 769-P, HepG2 and NCI-H1563) and cell cycle analysis were performed. Acute toxicity and cardiotoxicity were also evaluated in the zebrafish model. The tested compounds (1a, 1b) showed cytotoxic activity, with the greatest selectivity noted against the glioblastoma multiforme cell line (LN229). However, compound 1b showed stronger selective activity than 1a. Both of compounds were shown to significantly affect the M phase of the cell cycle. Whereas, the conducted toxicological examination of newly synthesized thiosemicarbazide derivates showed, that direct exposition of Danio rerio embryos to compound 1a, but not 1b, causes a concentration-dependent increase in developmental malformations, indicating possible teratogenic effects.
Collapse
Affiliation(s)
- Łucja Justyna Walczak-Nowicka
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland.
| | - Aleksandra Szopa
- Department of Clinical Pharmacy an d Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Anna Serefko
- Department of Clinical Pharmacy an d Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Anna Pachuta-Stec
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Kamil Pawłowski
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| | - Joanna Lachowicz
- Department of Clinical Pharmacy an d Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
4
|
de Sousa VM, Duarte SS, Silva DKF, Ferreira RC, de Moura RO, Segundo MASP, Farias D, Vieira L, Gonçalves JCR, Sobral MV. Cytotoxicity of a new spiro-acridine derivative: modulation of cellular antioxidant state and induction of cell cycle arrest and apoptosis in HCT-116 colorectal carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1901-1913. [PMID: 37676494 DOI: 10.1007/s00210-023-02686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Affiliation(s)
- Valgrícia Matias de Sousa
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Sâmia Sousa Duarte
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Daiana Karla Frade Silva
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Rafael Carlos Ferreira
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Ricardo Olímpio de Moura
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Davi Farias
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Leonardo Vieira
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Juan Carlos Ramos Gonçalves
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa , Paraíba, Brazil
| | - Marianna Vieira Sobral
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa , Paraíba, Brazil.
| |
Collapse
|
5
|
Varakumar P, Rajagopal K, Aparna B, Raman K, Byran G, Gonçalves Lima CM, Rashid S, Nafady MH, Emran TB, Wybraniec S. Acridine as an Anti-Tumour Agent: A Critical Review. Molecules 2022; 28:molecules28010193. [PMID: 36615391 PMCID: PMC9822522 DOI: 10.3390/molecules28010193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
This review summarized the current breakthroughs in the chemistry of acridines as anti-cancer agents, including new structural and biologically active acridine attributes. Acridine derivatives are a class of compounds that are being extensively researched as potential anti-cancer drugs. Acridines are well-known for their high cytotoxic activity; however, their clinical application is restricted or even excluded as a result of side effects. The photocytotoxicity of propyl acridine acts against leukaemia cell lines, with C1748 being a promising anti-tumour drug against UDP-UGT's. CK0403 is reported in breast cancer treatment and is more potent than CK0402 against estrogen receptor-negative HER2. Acridine platinum (Pt) complexes have shown specificity on the evaluated DNA sequences; 9-anilinoacridine core, which intercalates DNA, and a methyl triazene DNA-methylating moiety were also studied. Acridine thiourea gold and acridinone derivatives act against cell lines such as MDA-MB-231, SK-BR-3, and MCF-7. Benzimidazole acridine compounds demonstrated cytotoxic activity against Dual Topo and PARP-1. Quinacrine, thiazacridine, and azacridine are reported as anti-cancer agents, which have been reported in the previous decade and were addressed in this review article.
Collapse
Affiliation(s)
- Potlapati Varakumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
- Correspondence: (K.R.); (T.B.E.); (S.W.)
| | - Baliwada Aparna
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Kannan Raman
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | | | - Salma Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Correspondence: (K.R.); (T.B.E.); (S.W.)
| | - Sławomir Wybraniec
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Correspondence: (K.R.); (T.B.E.); (S.W.)
| |
Collapse
|
6
|
Synthesis and Evaluation of Antiproliferative Activity, Topoisomerase IIα Inhibition, DNA Binding and Non-Clinical Toxicity of New Acridine-Thiosemicarbazone Derivatives. Pharmaceuticals (Basel) 2022; 15:ph15091098. [PMID: 36145320 PMCID: PMC9506480 DOI: 10.3390/ph15091098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we report the synthesis of twenty new acridine–thiosemicarbazone derivatives and their antiproliferative activities. Mechanisms of action such as the inhibition of topoisomerase IIα and the interaction with DNA have been studied for some of the most active derivatives by means of both in silico and in vitro methods, and evaluations of the non-clinical toxicities (in vivo) in mice. In general, the compounds showed greater cytotoxicity against B16-F10 cells, with the highest potency for DL-08 (IC50 = 14.79 µM). Derivatives DL-01 (77%), DL-07 (74%) and DL-08 (79%) showed interesting inhibition of topoisomerase IIα when compared to amsacrine, at 100 µM. In silico studies proposed the way of bonding of these compounds and a possible stereoelectronic reason for the absence of enzymatic activity for CL-07 and DL-06. Interactions with DNA presented different spectroscopic effects and indicate that the compound CL-07 has higher affinity for DNA (Kb = 4.75 × 104 M−1; Ksv = 2.6 × 103 M−1). In addition, compounds selected for non-clinical toxicity testing did not show serious signs of toxicity at the dose of 2000 mg/kg in mice; cytotoxic tests performed on leukemic cells (K-562) and its resistant form (K-562 Lucena 1) identified moderate potency for DL-01 and DL-08, with IC50 between 11.45 and 17.32 µM.
Collapse
|
7
|
Haider K, Sharma S, Pokharel YR, Das S, Joseph A, Najmi AK, Ahmad F, Yar MS. Synthesis, biological evaluation, and in silico studies of indole-tethered pyrazoline derivatives as anticancer agents targeting topoisomerase IIα. Drug Dev Res 2022; 83:1555-1577. [PMID: 35898169 DOI: 10.1002/ddr.21976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022]
Abstract
We herein report a new series of indole-tethered pyrazoline derivatives as potent anticancer agents. A total of 12 compounds were designed and synthesized by conventional as well as microwave-irradiated synthesis methods. The latter method results in a significant reduction in the duration of reaction along with improved yields. All synthesized derivatives (7a-7l) were evaluated for their cytotoxic activity against A431, HeLa, and MDAMB-231 cell lines. Compounds 7a and 7b were found most potent in the series and demonstrated an IC50 value of 3.17 and 5.16 µM against the A431 cell line, respectively, compared to the standard drug doxorubicin. Compounds 7a and 7b significantly suppress colony formation, migration, and S phase cell cycle arrest of A431 cells. Furthermore, compound 7a regulated the expression of apoptotic proteins causing the downregulation of procaspase 3/9, antiapoptotic protein Bcl-xL, and upregulation of proapoptotic protein Bax in a dose-dependent manner. Topoisomerase enzyme inhibition assay confirmed that compounds 7a and 7b can significantly inhibit topoisomerase IIα. In vivo oral acute toxicity of compounds 7a and 7b revealed that both compounds are safe compared to doxorubicin; cardiomyopathy studies showed normal architecture of cardiomyocytes and myofibrils. In addition, molecular docking studies revealed the possible interaction of compounds 7a and 7b within the active binding site of the topoisomerase enzyme. The 100 ns molecular dynamic simulation of compounds 7a and 7b proved that both compounds validate all screening parameters.
Collapse
Affiliation(s)
- Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shivani Sharma
- Faculty of Life Science and Biotechnology, South Asian University, New Delhi, India
| | - Yuba Raj Pokharel
- Faculty of Life Science and Biotechnology, South Asian University, New Delhi, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Faiz Ahmad
- Faculty of Life Science and Biotechnology, South Asian University, New Delhi, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
8
|
Sartaj A, Annu, Alam M, Biswas L, Yar MS, Mir SR, Verma AK, Baboota S, Ali J. Combinatorial delivery of Ribociclib and Green tea extract mediated nanostructured lipid carrier for oral delivery for the treatment of breast cancer synchronizing in silico, in vitro, and in vivo studies. J Drug Target 2022; 30:1113-1134. [PMID: 35856926 DOI: 10.1080/1061186x.2022.2104292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Purpose: The current research investigated the development and evaluation of dual drug-loaded nanostructure lipidic carriers (NLCs) of green tea extract and Ribociclib.Method: In silico study were performed to determine the effectiveness of combinational approach. The prepared NLCs were subjected to in vitro drug release, lipolysis, haemolysis and cell line studies to assess their in vivo prospect.Results: In silico study was done to get docking score of EGCG (-8.98) close to Ribociclib (-10.78) in CDK-4 receptors. The prepared NLCs exhibited particle size (175.80 ± 3.51 nm); PDI (0.571 ± 0.012); and %EE [RBO (80.91 ± 1.66%) and GTE 75.98 ± 2.35%)] respectively. MCF-7 cell lines were used to evaluate the MTT assay, cellular uptake and antioxidant (ROS and SOD) of prepared NLCs. In vitro drug release showed the controlled release up to 72 h. In vitro lipolysis and in vitro haemolysis studies showed the availability of drugs at absorption sites and the greater in vivo prospects of NLCs respectively. Pharmacokinetic study revealed a 3.63-fold and 1.53-fold increment in RBO and GTE bioavailability in female Wistar rats respectively.Conclusion: The prominent potential of green tea extract and RBO-loaded NLCs in enhancing their therapeutic efficacy for better treatment of breast cancer.
Collapse
Affiliation(s)
- Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Annu
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Meraj Alam
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Largee Biswas
- Nanobiotech Lab, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Showkat Rasool Mir
- Department of Pharmacognosy and Phytochemistry, Phytomedicine Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Anita Kamra Verma
- Nanobiotech Lab, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
9
|
Zhou Y, Bai YP, Zhang M, Gao JM, Yang CJ, Zhang ZJ, Deng N, Li L, Liu YQ, Xu CR. Design and synthesis of Aza-boeravinone derivatives as potential novel topoisomerase I inhibitors. Bioorg Chem 2022; 122:105747. [PMID: 35338969 DOI: 10.1016/j.bioorg.2022.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 11/02/2022]
Abstract
Based on the structural skeleton of natural products boeravinones, two types of 6H-chromeno[3,4-b]quinoline derivatives were designed and synthesized by nitrogen atom substitution strategy. Then, their cytotoxic activities were evaluated against six human tumor cell lines including HepG2 (hepatocellular carcinoma), A2780 (ovarian cancer), Hela (cervical cancer), HCT116 (colorectal cancer), SW1990 (pancreatic cancer), and MCF7 (breast cancer). The results showed that compounds ZML-8 and ZML-14 exhibited robust inhibitory activities against HepG2 cells with IC50 values of 0.58 and 1.94 μM, respectively. In addition, ZML-8 and ZML-14 showed higher selectivity against HepG2 and L-02 cells than Topotecan. Mechanistically, ZML-8 and ZML-14 not only induced cell cycle arrest in the G2/M phase and cell apoptosis, but also dose-dependently inhibited topoisomerase I activity and induced DNA damage in HepG2 cells. Molecular docking showed that ZML-8 and ZML-14 could interact with topoisomerase I-DNA complex with a similar binding mode to Topotecan. Inhibitory activities of these two compounds on topoisomerase I were then confirmed in both cell-free systems and in whole-cell lysates. Taken together, compounds ZML-8 and ZML-14 merit further development as a new generation of non-camptothecin topoisomerase I inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Yong Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Yin-Peng Bai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; College of Pharmaceutical Science, Zhejiang Chinese Medical University, 310000, PR China
| | - Mi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jian-Mei Gao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; College of Pharmaceutical Science, Zhejiang Chinese Medical University, 310000, PR China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| | - Nan Deng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Lei Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; College of Pharmaceutical Science, Zhejiang Chinese Medical University, 310000, PR China.
| | - Chuan-Rui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
10
|
Duarte SS, Silva DKF, Lisboa TMH, Gouveia RG, de Andrade CCN, de Sousa VM, Ferreira RC, de Moura RO, Gomes JNS, da Silva PM, de Lourdes Assunção Araújo de Azevedo F, Keesen TSL, Gonçalves JCR, Batista LM, Sobral MV. Apoptotic and antioxidant effects in HCT-116 colorectal carcinoma cells by a spiro-acridine compound, AMTAC-06. Pharmacol Rep 2022; 74:545-554. [PMID: 35297003 DOI: 10.1007/s43440-022-00357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Acridine compounds have been described as promising anticancer agents. Previous studies showed that (E)-1'-((4-chlorobenzylidene)amino)-5'-oxo-1',5'-dihydro-10H-spiro[acridine-9,2'-pyrrole]-4'-carbonitrile (AMTAC-06), a spiro-acridine compound, has antitumor activity on Ehrlich tumor and low toxicity. Herein, we investigated its antitumor effect against human cells in vitro. METHODS MTT assay was used to assess cytotoxicity of AMTAC-06 (3.125-200 µM) against tumor and non-tumor cells, and the half-maximal inhibitory concentration (IC50) and the selectivity index (SI) were calculated. The effects on the cell cycle (propidium iodide-PI-staining), apoptosis (Annexin V-FITC/PI double staining by flow cytometry), and production of reactive oxygen species, ROS (DCFH assay) were also evaluated. Statistical analysis was achieved using ANOVA followed by Tukey's post-test. RESULTS AMTAC-06 showed higher cytotoxicity against colorectal carcinoma HCT-116 cells (IC50: 12.62 µM). The SI showed that AMTAC-06 was more selective for HCT-116 cells (HaCaT SI: 1.41; PBMC SI: 0.62) than doxorubicin (HaCaT SI: 0.10; PBMC SI: 0.01). AMTAC-06 (15 and 30 µM) induced an increase in the sub-G1 peak (p < 0.000001) and cell cycle arrest in S phase (p = 0.003547). Moreover, treatment with this compound (15 and 30 µM) resulted in increased early (p < 0.000001) and late apoptotic cells (p < 0.000001). In addition, there was a reduction on ROS production (p < 0.000001). CONCLUSIONS AMTAC-06 presents anticancer activity against HCT-116 cells by regulating the cell cycle, inducing apoptosis and an antioxidant action.
Collapse
Affiliation(s)
- Sâmia Sousa Duarte
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Daiana Karla Frade Silva
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Thaís Mangeon Honorato Lisboa
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Rawny Galdino Gouveia
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Valgrícia Matias de Sousa
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Rafael Carlos Ferreira
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Ricardo Olimpio de Moura
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Joilly Nilce Santana Gomes
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Patricia Mirella da Silva
- Invertebrate Immunology and Pathology Laboratory, Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Tatjana S L Keesen
- Immunology of Infectious Diseases Laboratory, Biotechnology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Leônia Maria Batista
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.,Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Marianna Vieira Sobral
- Postgraduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Paraíba, Brazil. .,Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil. .,Laboratório de Oncofarmacologia (Oncofar), Instituto de Pesquisa em Fármacos e Medicamentos (IPeFarM). Cidade Universitária, Campus I, João Pessoa, Paraíba, 58051-900, Brazil.
| |
Collapse
|
11
|
Wei L, Wang M, Wang Q, Han Z. Dual targeting, a new strategy for novel PARP inhibitor discovery. Drug Discov Ther 2022; 15:300-309. [PMID: 35034923 DOI: 10.5582/ddt.2021.01100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As a hallmark for cancer treatment, PARP inhibitors can effectively kill tumor cells with a mechanism termed as synthetic lethality, and are used to treat various cancers including ovarian, breast, prostate, pancreatic and others with DNA repair defects. However, along with the clinical trials progressing, the limitations of PARP-1 inhibitors became apparent such as limited activity and indications. Studies have shown that a molecule that is able to simultaneously restrict two or more targets involving in tumors is more effective in preventing and treating cancers due to the enhancing synergies. In order to make up for the shortcomings of PARP inhibitors, reduce the development cost and overcome the pharmacokinetic defects, multiple works were carried out to construct dual targeting PARP inhibitors for cancer therapy. Herein, they were summarized briefly.
Collapse
Affiliation(s)
- Lina Wei
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Meizhi Wang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qiaoyun Wang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhiwu Han
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
12
|
Alnoman RB, Parveen S, Khan A, Knight JG, Hagar M. New quinoline-based BODIPYs as EGFR/VEGFR-2 inhibitors: Molecular docking, DFT and in vitro cytotoxicity on HeLa cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
In Silico Drug Screening Based Development of Novel Formulations for Onychomycosis Management. Gels 2021; 7:gels7040221. [PMID: 34842710 PMCID: PMC8628710 DOI: 10.3390/gels7040221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022] Open
Abstract
Onychomycosis is a prominent fungal infection that causes discoloration, thickening, and mutilation leading to the separation of the nail from the nail bed. Treatment modalities for onychomycosis may include oral, topical, or combination therapy with antifungals and at times may require chemical or surgical intervention. The burden of side effects of antifungals is enormous, and therefore using molecular docking-based drug selection in context with the target keratin protein would ensure better disease management. Ciclopirox, Amorolfine HCl, Efinaconazole, Tioconazole, and Tavaborole were submitted for assessment, revealing that Amorolfine HCl is the best fit. Consequently, two formulations (Nail lacquer and nanoemulgel) were developed from Amorolfine HCl to validate the in silico screening outcomes. The formulations were further fortified with over-the-counter ingredients vis-a-vis with vitamin E in nail lacquer and undecylenic acid in nanoemulgel for their prominent roles in improving nail health. Both the formulations were systematically designed, optimized, and characterized. Amorolfine HCl containing nanoemulgel (NEG) was developed using undecylenic acid as an oil phase and thioglycolic acid as a penetration enhancer. The quality parameters evaluated were particle size, the zeta potential for nanoemulsion (NE) (78.04 ± 4.724 nm and −0.7mV, respectively), in vitro cumulative drug release (96.74% for NE and 88.54% for NEG), and transungual permeation (about 73.49% for NEG and 54.81% for NE). Nail lacquer was evaluated for the drying time, non-volatile content, and blush test. In vitro cumulative drug release of the developed nail lacquer and comparator marketed formulations were around 81.5% and 75%, respectively. Similarly, the transungual drug permeation was 6.32 μg/cm2 and 5.89 μg/cm2, respectively, in 24 h. The in silico guided preparation of both formulations containing Amorolfine HCl and over the counter ingredients is amenable for therapeutic use against onychomycosis and will be evaluated in the in vivo model.
Collapse
|
14
|
Pathak A, Pandey V, Raj Pokharel Y, Devaraji V, Ali A, Haider K, Saad S, Dewangan RP, Siddiqui N, Shahar Yar M. Pharmacophore based drug design and synthesis of oxindole bearing hybrid as anticancer agents. Bioorg Chem 2021; 116:105358. [PMID: 34544029 DOI: 10.1016/j.bioorg.2021.105358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 11/18/2022]
Abstract
Dual TK inhibitors have shown significant clinical effects against many tumors, but with unmanageable side effects. Design approach and selectivity of these inhibitors plays substantial role in their potency and side-effects. Understanding the homology of binding sites in targeted receptors, and involvement of signaling proteins after the inhibition might help in producing less toxic but effective inhibitors. Herein, we designed benzylideneindolon-2-one derivatives based on homology modeling in binding sites of VEGFR-2 and EGFR receptors as dual- inhibitor potent anticancer compounds with high selectivity. The benzylideneindolon-2-one derivatives were found to possess conformational switch in form of oxindole, substituted at 2-benzimidazole. Within synthesized compounds, 5b was found most active in in-vitro enzyme inhibition assay against VEGFR-2 and EGFR with highest IC50 value of 6.81 ± 2.55 and 13.04 ± 4.07 nM, respectively. Interestingly, cytotoxicity studies revealed selective toxicity of compound 5b against proliferation of A-431 cell lines (over expressed VEGFR-2 and EGFR) with GI50 value of 0.9 ± 0.66 µM. However, the compounds showed mild to moderate activity in all other cancer cell line in the range of 0.2-100 μM. Further mode of action studies by flow cytometry and western blot on A-431 indicated that they work via apoptosis at S- phase following Bcl/Bax pathway, and cell migration via MMP9. 5b not only suppressed tumor growth but also improved vandetanib associated with weight loss toxicity. Moreover, 5b was found safer than sunitinib and erlotinib with LD50 of 500 mg/kg body weight. These results propose 5b as potential anti-tumor drug with safer profile of conventional inhibitors of VEGFR-2 and EGFR for solid tumors.
Collapse
Affiliation(s)
- Ankita Pathak
- Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Vivek Pandey
- Faculty of Life Science and Biotechnology, South Asian University, New Delhi, India
| | - Yuba Raj Pokharel
- Faculty of Life Science and Biotechnology, South Asian University, New Delhi, India
| | - Vinod Devaraji
- Computational Drug Design Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Kashif Haider
- Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Suma Saad
- Department of Pharmaceutics, SPER, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | | | - Nadeem Siddiqui
- Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard, Hamdard Nagar, New Delhi, India.
| |
Collapse
|
15
|
Kharb R. Updates on Receptors Targeted by Heterocyclic Scaffolds: New Horizon in Anticancer Drug Development. Anticancer Agents Med Chem 2021; 21:1338-1349. [PMID: 32560614 DOI: 10.2174/1871520620666200619181102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 11/22/2022]
Abstract
Anticancer is a high priority research area for scientists as cancer is one of the leading causes of death globally. It is pertinent to mention here that conventional anticancer drugs such as methotrexate, vincristine, cyclophosphamide, etoposide, doxorubicin, cisplatin, etc. are not much efficient for the treatment of different types of cancer; also these suffer from serious side effects leading to therapy failure. A large variety of cancerrelated receptors such as carbonic anhydrase, tyrosine kinase, topoisomerase, protein kinase, histone deacetylase, etc. have been identified which can be targeted by anticancer drugs. Heterocycles like oxadiazole, thiazole, thiadiazole, indole, pyridine, pyrimidine, benzimidazole, etc. play a pivotal role in modern medicinal chemistry because they have a broad spectrum of pharmacological activities including prominent anticancer activity. Therefore, it was considered significant to explore heterocyclic compounds reported in recent most literature which can bind effectively with the cancer-related receptors. This will not only provide a targeted approach to deal with cancer but also the safety profile of the drugs can be further improved. The information provided in this manuscript may be found useful for the design and development of anticancer drugs.
Collapse
Affiliation(s)
- Rajeev Kharb
- Centre for Pharmaceutical Chemistry & Pharmaceutical Analysis, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida-201313, Uttar Pradesh, India
| |
Collapse
|
16
|
Lauria A, La Monica G, Bono A, Martorana A. Quinoline anticancer agents active on DNA and DNA-interacting proteins: From classical to emerging therapeutic targets. Eur J Med Chem 2021; 220:113555. [PMID: 34052677 DOI: 10.1016/j.ejmech.2021.113555] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022]
Abstract
Quinoline is one of the most important and versatile nitrogen heterocycles embodied in several biologically active molecules. Within the numerous quinolines developed as antiproliferative agents, this review is focused on compounds interfering with DNA structure or with proteins/enzymes involved in the regulation of double helix functional processes. In this light, a special focus is given to the quinoline compounds, acting with classical/well-known mechanisms of action (DNA intercalators or Topoisomerase inhibitors). In particular, the quinoline drugs amsacrine and camptothecin (CPT) have been studied as key lead compounds for the development of new agents with improved PK and tolerability properties. Moreover, notable attention has been paid to the quinoline molecules, which are able to interfere with emerging targets involved in cancer progression, as G-quadruplexes or the epigenetic ones (e.g.: histone deacetylase, DNA and histones methyltransferase). The antiproliferative and the enzymatic inhibition data of the reviewed compounds have been analyzed. Furthermore, concerning the SAR (structure-activity relationship) aspects, the most recurrent ligand-protein interactions are summarized, underling the structural requirements for each kind of mechanism of action.
Collapse
Affiliation(s)
- Antonino Lauria
- Dipartimento di Scienze e Technologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Via Archirafi - 32, 90123, Palermo, Italy
| | - Gabriele La Monica
- Dipartimento di Scienze e Technologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Via Archirafi - 32, 90123, Palermo, Italy
| | - Alessia Bono
- Dipartimento di Scienze e Technologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Via Archirafi - 32, 90123, Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e Technologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Via Archirafi - 32, 90123, Palermo, Italy.
| |
Collapse
|
17
|
Amin S, Alam MM, Akhter M, Najmi AK, Siddiqui N, Husain A, Shaquiquzzaman M. A review on synthetic procedures and applications of phosphorus oxychloride (POCl 3) in the last biennial period (2018–19). PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2020.1831499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shaista Amin
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - M. Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - A. K. Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nadeem Siddiqui
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Asif Husain
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - M. Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
18
|
Synthesis and biological evaluation of novel 1,3,4-thiadiazole derivatives as possible anticancer agents. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:499-513. [PMID: 32412436 DOI: 10.2478/acph-2020-0034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2019] [Indexed: 01/19/2023]
Abstract
The synthesis of new N-(5-substituted-1,3,4-thiadiazol-2-yl)-2-[(5-(substituted amino)-1,3,4-thiadiazol-2-yl)thio]acetamide derivatives and investigation of their anticancer activities were the aims of this work. All the new compounds' structures were elucidated by elemental analyses, IR, 1H NMR, 13C NMR and MS spectral data. Anticancer activity studies of the compounds were evaluated against MCF-7 and A549 tumor cell lines. In addition, with the purpose of determining the selectivity of cytotoxic activities, the most active compound was screened against a noncancer NIH3T3 cell line (mouse embryonic fibroblast cells). Among the tested compounds, compound 4y (N-(5-ethyl-1,3,4-thiadiazol-2-yl)-2-((5-(p-tolylamino)-1,3,4-thiadiazol-2-yl)thio)acetamide), showed promising cytotoxic activity against MCF7 cancer cell with an IC 50value of 0.084 ± 0.020 mmol L-1 and against A549 cancer cell with IC 50 value of 0.034 ± 0.008 mmol L-1, compared with cisplatin. The aromatase inhibitory activity was evaluated for compound 4y on MCF-7 cell line showing promising activity with IC50 of 0.062 ± 0.004 mmol L-1.
Collapse
|
19
|
Kozurkova M, Sabolova D, Kristian P. A new look at 9-substituted acridines with various biological activities. J Appl Toxicol 2020; 41:175-189. [PMID: 32969520 DOI: 10.1002/jat.4072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022]
Abstract
Heterocycles have long been the focus of intensive study in attempts to develop novel therapeutic compounds, and acridine, a polynuclear nitrogen molecule containing a heterocycle, has attracted a considerable amount of scientific attention. Acridine derivatives have been studied in detail and have been found to possess multitarget properties, which inhibit topoisomerase enzymes that regulate topological changes in DNA and interfere with the essential biological function of DNA. This article describes some recent advancements in the field of new 9-substituted acridine heterocyclic agents and describes both the structure and the structure-activity relationship of the most promising molecules. The article will also present the IC50 values of the novel derivatives against various human cancer cell lines. The mini review also investigates the topoisomerase inhibition and antibacterial and antimalarial activity of these polycyclic aromatic derivatives.
Collapse
Affiliation(s)
- Maria Kozurkova
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Šafárik University, Kosice, Slovak Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Danica Sabolova
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Šafárik University, Kosice, Slovak Republic
| | - Pavol Kristian
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, P. J. Šafárik University, Kosice, Slovak Republic
| |
Collapse
|
20
|
Huang WY, Zhang XR, Lyu L, Wang SQ, Zhang XT. Pyridazino[1,6-b]quinazolinones as new anticancer scaffold: Synthesis, DNA intercalation, topoisomerase I inhibition and antitumor evaluation in vitro and in vivo. Bioorg Chem 2020; 99:103814. [PMID: 32278208 DOI: 10.1016/j.bioorg.2020.103814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/26/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022]
Abstract
A new anticancer N-containing heterocyclic scaffold was designed and 30 pyridazino[1,6-b]quinazolinone derivatives were synthesized and characterized. Antiproliferation evaluation in vitro against four human cancer cell lines including SK-OV-3(ovarian cell), CNE-2(nasopharyngeal cell), MGC-803(gastric cell) and NCI-H460(lung cell) indicated that most of them exhibited potent anticancer activity and the IC50 value of the most potent compound lowered to sub-μM. DNA interaction assay indicated that compounds 4e, 4g, 6o, 6p, 8o can intercalate into DNA. Compounds 6 and 8 also demonstrated potent topoisomerase I (topo I) activity. Annexin V- FITC/propidium iodide dual staining assay and cell cycle analysis indicated that 2-(4-bromophenyl)-4-((3-(diethylamino)propyl)amino) -10H-pyridazino [1,6-b]quinazolin- 10-one (8p) could induce arrest cell cycle at G2 phase and apoptosis in MGC-803 cells in a dose-dependent manner. The in vivo antitumor efficiency of compound 8p was also evaluated on MGC-803 xenograft nude mice, and the relative tumor growth inhibition was up to 55.9% at a dose of 20 mg/kg per two days. The results suggested that pyridazino[1,6-b]-quinazolinones might serve as a promising novel scaffold for the development of new antitumor agents.
Collapse
Affiliation(s)
- Wan-Yun Huang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Guilin Medical University, Guilin 541004, China.
| | - Xiao-Rong Zhang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Liang Lyu
- Department of Pharmacology, College of Pharmacy, Guilin Medical University, Guilin 541004, China.
| | - Shu-Qin Wang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Xiao-Ting Zhang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Guilin Medical University, Guilin 541004, China
| |
Collapse
|
21
|
|