1
|
Konaklieva MI, Plotkin BJ. Activity of Organoboron Compounds against Biofilm-Forming Pathogens. Antibiotics (Basel) 2024; 13:929. [PMID: 39452196 PMCID: PMC11504661 DOI: 10.3390/antibiotics13100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Bacteria have evolved and continue to change in response to environmental stressors including antibiotics. Antibiotic resistance and the ability to form biofilms are inextricably linked, requiring the continuous search for alternative compounds to antibiotics that affect biofilm formation. One of the latest drug classes is boron-containing compounds. Over the last several decades, boron has emerged as a prominent element in the field of medicinal chemistry, which has led to an increasing number of boron-containing compounds being considered as potential drugs. The focus of this review is on the developments in boron-containing organic compounds (BOCs) as antimicrobial/anti-biofilm probes and agents.
Collapse
Affiliation(s)
- Monika I. Konaklieva
- Department of Chemistry, American University, 4400 Massachusetts Ave. NW, Washington, DC 20016, USA
| | - Balbina J. Plotkin
- Department of Microbiology and Immunology, Midwestern University, 555 31st St., Downers Grove, IL 60515, USA;
| |
Collapse
|
2
|
Krajewska J, Chyży P, Durka K, Wińska P, Krzyśko KA, Luliński S, Laudy AE. Aromatic Diboronic Acids as Effective KPC/AmpC Inhibitors. Molecules 2023; 28:7362. [PMID: 37959781 PMCID: PMC10648349 DOI: 10.3390/molecules28217362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Over 30 compounds, including para-, meta-, and ortho-phenylenediboronic acids, ortho-substituted phenylboronic acids, benzenetriboronic acids, di- and triboronated thiophenes, and pyridine derivatives were investigated as potential β-lactamase inhibitors. The highest activity against KPC-type carbapenemases was found for ortho-phenylenediboronic acid 3a, which at the concentration of 8/4 mg/L reduced carbapenems' MICs up to 16/8-fold, respectively. Checkerboard assays revealed strong synergy between carbapenems and 3a with the fractional inhibitory concentrations indices of 0.1-0.32. The nitrocefin hydrolysis test and the whole cell assay with E. coli DH5α transformant carrying blaKPC-3 proved KPC enzyme being its molecular target. para-Phenylenediboronic acids efficiently potentiated carbapenems against KPC-producers and ceftazidime against AmpC-producers, whereas meta-phenylenediboronic acids enhanced only ceftazidime activity against the latter ones. Finally, the statistical analysis confirmed that ortho-phenylenediboronic acids act synergistically with carbapenems significantly stronger than other groups. Since the obtained phenylenediboronic compounds are not toxic to MRC-5 human fibroblasts at the tested concentrations, they can be considered promising scaffolds for the future development of novel KPC/AmpC inhibitors. The complexation of KPC-2 with the most representative isomeric phenylenediboronic acids 1a, 2a, and 3a was modeled by quantum mechanics/molecular mechanics calculations. Compound 3a reached the most effective configuration enabling covalent binding to the catalytic Ser70 residue.
Collapse
Affiliation(s)
- Joanna Krajewska
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Piotr Chyży
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland;
| | - Krzysztof Durka
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.D.); (P.W.); (S.L.)
| | - Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.D.); (P.W.); (S.L.)
| | | | - Sergiusz Luliński
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.D.); (P.W.); (S.L.)
| | - Agnieszka E. Laudy
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
3
|
Ailincai D, Cibotaru S, Anisiei A, Coman CG, Pasca AS, Rosca I, Sandu AI, Mititelu-Tartau L, Marin L. Mesoporous chitosan nanofibers loaded with norfloxacin and coated with phenylboronic acid perform as bioabsorbable active dressings to accelerate the healing of burn wounds. Carbohydr Polym 2023; 318:121135. [PMID: 37479445 DOI: 10.1016/j.carbpol.2023.121135] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/23/2023]
Abstract
The paper reports new chitosan-based nanofibers, designed to address the healing of burn wounds. To this aim, mesoporous chitosan fiber mats were prepared by electrospinning using poly(ethylene oxide) as sacrificial additive, followed by loading with norfloxacin and coating with an antifungal agent via dynamic imine bonds. Dynamic vapor sorption experiment proved intra-fiber mesopores around 2.7 nm, and UV-vis, FTIR, and NMR spectroscopy confirmed the norfloxacin embedding and the imination reaction. SEM, AFM and POM techniques displayed semicrystalline nanofibers with average diameter around 170 nm entangled into a non-woven mat. Their mesoporous nature favored a rapid adsorption of fluids up to 17 g/g, and a biodegradation rate fitting the wound healing rate, i.e. up to 30 % mass loss in media of pH characteristic to wound exudate and total degradation in that characteristic to normal dermis. The composite fibers released the NFX and 2FPBA in a controlled manner, and showed antimicrobial activity against gram positive, gram negative and fungal strains. They had no cytotoxic effect on normal human dermal fibroblasts, and showed biocompatibility on experimental rats. The investigation of wound healing ability on second/third-degree burn model in rats revealed wound closure and total restoration of the fully functional dermis and epidermis.
Collapse
Affiliation(s)
- Daniela Ailincai
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Sandu Cibotaru
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Alexandru Anisiei
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Corneliu G Coman
- "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Aurelian Sorin Pasca
- "Ion Ionescu de la Brad" University, Laboratory of Antimicrobial Chemotherapy, Iasi, Romania
| | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Andreea-Isabela Sandu
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | | | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania.
| |
Collapse
|
4
|
Ailincai D, Turin Moleavin IA, Sarghi A, Fifere A, Dumbrava O, Pinteala M, Balan GG, Rosca I. New Hydrogels Nanocomposites Based on Chitosan, 2-Formylphenylboronic Acid, and ZnO Nanoparticles as Promising Disinfectants for Duodenoscopes Reprocessing. Polymers (Basel) 2023; 15:2669. [PMID: 37376315 DOI: 10.3390/polym15122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
New hydrogels nanocomposites, based on iminoboronate hydrogels and ZnO nanoparticles (ZnO-NPs), were obtained and characterised in order to develop a new class of disinfectants able to fight the nosocomial infections produced by duodenoscopes investigation procedures. The formation of the imine linkages between chitosan and the aldehyde was demonstrated using NMR and FTIR spectroscopy, while the supramolecular architecture of the developed systems was evaluated via wide-angle X-ray diffraction and polarised optical microscopy. The morphological characterisation of the systems via scanning electron microscopy revealed the highly porous structure of the materials, in which no ZnO agglomeration could be observed, indicating the very fine and homogenous encapsulation of the nanoparticles into the hydrogels. The newly synthetised hydrogels nanocomposites was proven to have synergistic antimicrobial properties, being very efficient as disinfectants against reference strains as: Enterococcus faecalis, Klebsiella pneumoniae, and Candida albicans.
Collapse
Affiliation(s)
- Daniela Ailincai
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | | | - Alexandra Sarghi
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Adrian Fifere
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Oana Dumbrava
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Mariana Pinteala
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Gheorghe G Balan
- Faculty of Medicine, 'Grigore T. Popa' University of Medicine, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, St. Spiridon Emergency County Hospital, 700111 Iasi, Romania
| | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|
5
|
Adamczyk-Woźniak A, Sporzyński A. Merging Electron Deficient Boronic Centers with Electron-Withdrawing Fluorine Substituents Results in Unique Properties of Fluorinated Phenylboronic Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113427. [PMID: 35684365 PMCID: PMC9182515 DOI: 10.3390/molecules27113427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Fluorinated boron species are a very important group of organoboron compounds used first of all as receptors of important bioanalytes, as well as biologically active substances, including Tavaborole as an antifungal drug. The presence of substituents containing fluorine atoms increases the acidity of boronic compounds, which is crucial from the point of view of their interactions with analytes or certain pathogen's enzymes. The review discusses the electron acceptor properties of fluorinated boronic species using both the acidity constant (pKa) and acceptor number (AN) in connection with their structural parameters. The NMR spectroscopic data are also presented, with particular emphasis on 19F resonance due to the wide range of information that can be obtained from this technique. Equilibria in solutions, such as the dehydration of boronic acid to form boroxines and their esterification or cyclization with the formation of 3-hydroxyl benzoxaboroles, are discussed. The results of the latest research on the biological activity of boronic compounds by experimental in vitro methods and theoretical calculations using docking studies are also discussed.
Collapse
Affiliation(s)
- Agnieszka Adamczyk-Woźniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Correspondence: (A.A.-W.); (A.S.); Tel.: +48-22-2345737 (A.A.-W.)
| | - Andrzej Sporzyński
- Faculty of Agriculture and Forestry, University of Warmia and Mazury, Oczapowskiego 2, 10-719 Olsztyn, Poland
- Correspondence: (A.A.-W.); (A.S.); Tel.: +48-22-2345737 (A.A.-W.)
| |
Collapse
|
6
|
Anisiei A, Rosca I, Sandu AI, Bele A, Cheng X, Marin L. Imination of Microporous Chitosan Fibers-A Route to Biomaterials with "On Demand" Antimicrobial Activity and Biodegradation for Wound Dressings. Pharmaceutics 2022; 14:pharmaceutics14010117. [PMID: 35057012 PMCID: PMC8777909 DOI: 10.3390/pharmaceutics14010117] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
Microporous chitosan nanofibers functionalized with different amounts of an antimicrobial agent via imine linkage were prepared by a three-step procedure including the electrospinning of a chitosan/PEO blend, PEO removal and acid condensation reaction in a heterogeneous system with 2-formylphenylboronic acid. The fibers’ characterization was undertaken keeping in mind their application to wound healing. Thus, by FTIR and 1H-NMR spectroscopy, it was confirmed the successful imination of the fibers and the conversion degree of the amine groups of chitosan into imine units. The fiber morphology in terms of fiber diameter, crystallinity, inter- and intra-fiber porosity and strength of intermolecular forces was investigated using scanning electron microscopy, polarized light microscopy, water vapor sorption and thermogravimetric analysis. The swelling ability was estimated in water and phosphate buffer by calculating the mass equilibrium swelling. The fiber biodegradation was explored in five media of different pH, corresponding to different stages of wound healing and the antimicrobial activity against the opportunistic pathogens inflicting wound infection was investigated according to standard tests. The biocompatibility and bioadhesivity were studied on normal human dermal fibroblast cells by direct contact procedure. The dynamic character of the imine linkage of the functionalized fibers was monitored by UV-vis spectroscopy. The results showed that the functionalization of the chitosan microporous nanofibers with antimicrobial agents via imine linkage is a great route towards bio-absorbable wound dressings with “on demand” antimicrobial properties and biodegradation rate matching the healing stages.
Collapse
Affiliation(s)
- Alexandru Anisiei
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (A.A.); (I.R.); (A.-I.S.); (A.B.)
| | - Irina Rosca
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (A.A.); (I.R.); (A.-I.S.); (A.B.)
| | - Andreea-Isabela Sandu
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (A.A.); (I.R.); (A.-I.S.); (A.B.)
| | - Adrian Bele
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (A.A.); (I.R.); (A.-I.S.); (A.B.)
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
| | - Luminita Marin
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley, 41A, 700487 Iasi, Romania; (A.A.); (I.R.); (A.-I.S.); (A.B.)
- Correspondence:
| |
Collapse
|
7
|
Adamczyk-Woźniak A, Tarkowska M, Lazar Z, Kaczorowska E, Madura ID, Maria Dąbrowska A, Lipok J, Wieczorek D. Synthesis, structure, properties and antimicrobial activity of para trifluoromethyl phenylboronic derivatives. Bioorg Chem 2021; 119:105560. [PMID: 34942467 DOI: 10.1016/j.bioorg.2021.105560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Accepted: 12/11/2021] [Indexed: 01/16/2023]
Abstract
The [2-formyl-4-(trifluoromethyl)phenyl]boronic acid as well as its benzoxaborole and bis(benzoxaborole) derivatives were obtained and their properties studied. The 2-formyl compound displays an unusual structure in the crystalline state, with a significant twist of the boronic group, whereas in DMSO solution it tautomerizes with formation of a cyclic isomer. All the studied compounds exhibit relatively high acidity as well as a reasonable antimicrobial activity. Docking studies showed interactions of all the investigated compounds with the binding pocket of Candida albicans LeuRS. High activity against Bacillus cereus was determined for the 2-formyl compound as well as for the novel bis(benzoxaborole), whereas the studied benzoxaborole shows high antifungal action with MIC values equal to 7.8and 3.9 μg/mL against C. albicans and A. niger respectively. None of the studied compounds exhibits reasonable activity against E. coli.
Collapse
Affiliation(s)
| | - Magdalena Tarkowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664 , Poland
| | - Zofia Lazar
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664 , Poland
| | - Ewa Kaczorowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664 , Poland
| | - Izabela D Madura
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664 , Poland
| | - Anna Maria Dąbrowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664 , Poland
| | - Jacek Lipok
- Faculty of Chemistry, University of Opole, Oleska 48, Opole 45-052 , Poland
| | - Dorota Wieczorek
- Faculty of Chemistry, University of Opole, Oleska 48, Opole 45-052 , Poland
| |
Collapse
|
8
|
Lungu R, Anisiei A, Rosca I, Sandu AI, Ailincai D, Marin L. Double functionalization of chitosan based nanofibers towards biomaterials for wound healing. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
9
|
Adamczyk-Woźniak A, Gozdalik JT, Kaczorowska E, Durka K, Wieczorek D, Zarzeczańska D, Sporzyński A. (Trifluoromethoxy)Phenylboronic Acids: Structures, Properties, and Antibacterial Activity. Molecules 2021; 26:molecules26072007. [PMID: 33916124 PMCID: PMC8036725 DOI: 10.3390/molecules26072007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 12/20/2022] Open
Abstract
Three isomers of (trifluoromethoxy)phenylboronic acids were studied in the context of their physicochemical, structural, antimicrobial and spectroscopic properties. They were characterized by 1H, 13C, 11B and 19F NMR spectroscopy. The acidity of all the isomers was evaluated by both spectrophotometric and potentiometric titrations. The introduction of the -OCF3 group influences the acidity, depending, however, on the position of a substituent, with the ortho isomer being the least acidic. Molecular and crystal structures of ortho and para isomers were determined by the single crystal XRD method. Hydrogen bonded dimers are the basic structural motives of the investigated molecules in the solid state. In the case of the ortho isomer, intramolecular hydrogen bond with the -OCF3 group is additionally formed, weaker, however, than that in the analogous -OCH3 derivative, which has been determined by both X-Ray measurements as well as theoretical DFT calculations. Docking studies showed possible interactions of the investigated compounds with LeuRS of Escherichia coli. Finally, the antibacterial potency of studied boronic acids in vitro were evaluated against Escherichia coli and Bacillus cereus.
Collapse
Affiliation(s)
- Agnieszka Adamczyk-Woźniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (J.T.G.); (E.K.); (K.D.)
- Correspondence:
| | - Jan T. Gozdalik
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (J.T.G.); (E.K.); (K.D.)
| | - Ewa Kaczorowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (J.T.G.); (E.K.); (K.D.)
| | - Krzysztof Durka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (J.T.G.); (E.K.); (K.D.)
| | - Dorota Wieczorek
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland;
| | - Dorota Zarzeczańska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland;
| | - Andrzej Sporzyński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (J.T.G.); (E.K.); (K.D.)
- Faculty of Agriculture and Forestry, University of Warmia and Mazury, Oczapowskiego 8, 10-719 Olsztyn, Poland;
| |
Collapse
|
10
|
Tevyashova AN, Chudinov MV. Progress in the medicinal chemistry of organoboron compounds. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4977] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review aims to draw attention to the latest advances in the organoboron chemistry and therapeutic use of organoboron compounds. The synthetic strategies towards boron-containing compounds with proven in vitro and/or in vivo biological activities, including derivatives of boronic acids, benzoxaboroles, benzoxaborines and benzodiazaborines, are summarized. Approaches to the synthesis of hybrid structures containing an organoboron moiety as one of the pharmacophores are considered, and the effect of this modification on the pharmacological activity of the initial molecules is analyzed. On the basis of analysis of the published data, the most promising areas of research in the field of organoboron compounds are identified, including the latest methods of synthesis, modification and design of effective therapeutic agents.
The bibliography includes 246 references.
Collapse
|
11
|
Wieczorek D, Kaczorowska E, Wiśniewska M, Madura ID, Leśniak M, Lipok J, Adamczyk-Woźniak A. Synthesis and Influence of 3-Amino Benzoxaboroles Structure on Their Activity against Candida albicans. Molecules 2020; 25:E5999. [PMID: 33352986 PMCID: PMC7766895 DOI: 10.3390/molecules25245999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022] Open
Abstract
Benzoxaboroles emerged recently as molecules of high medicinal potential with Kerydin® (Tavaborole) and Eucrisa® (Crisaborole) currently in clinical practice as antifungal and anti-inflammatory drugs, respectively. Over a dozen of 3-amino benzoxaboroles, including Tavaborole's derivatives, have been synthetized and characterized in terms of their activity against Candida albicans as a model pathogenic fungus. The studied compounds broaden considerably the structural diversity of reported benzoxaboroles, enabling determination of the influence of the introduction of a heterocyclic amine, a fluorine substituent as well as the formyl group on antifungal activity of those compounds. The determined zones of the growth inhibition of examined microorganism indicate high diffusion of majority of the studied compounds within the applied media as well as their reasonable activity. The Minimum Inhibitory Concentration (MIC) values show that the introduction of an amine substituent in position "3" of the benzoxaborole heterocyclic ring results in a considerable drop in activity in comparison with Tavaborole (AN2690) as well as unsubstituted benzoxaborole (AN2679). In all studied cases the presence of a fluorine substituent at position para to the boron atom results in lower MIC values (higher activity). Interestingly, introduction of a fluorine substituent in the more distant piperazine phenyl ring does not influence MIC values. As determined by X-ray studies, introduction of a formyl group in proximity of the boron atom results in a considerable change of the boronic group geometry. The presence of a formyl group next to the benzoxaborole unit is also detrimental for activity against Candida albicans.
Collapse
Affiliation(s)
- Dorota Wieczorek
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland; (D.W.); (J.L.)
| | - Ewa Kaczorowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (E.K.); (M.W.); (I.D.M.); (M.L.)
| | - Marta Wiśniewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (E.K.); (M.W.); (I.D.M.); (M.L.)
| | - Izabela D. Madura
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (E.K.); (M.W.); (I.D.M.); (M.L.)
| | - Magdalena Leśniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (E.K.); (M.W.); (I.D.M.); (M.L.)
| | - Jacek Lipok
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland; (D.W.); (J.L.)
| | - Agnieszka Adamczyk-Woźniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (E.K.); (M.W.); (I.D.M.); (M.L.)
| |
Collapse
|
12
|
Borys KM, Wieczorek D, Tarkowska M, Jankowska A, Lipok J, Adamczyk-Woźniak A. Mechanochemical synthesis of antifungal bis(benzoxaboroles). RSC Adv 2020; 10:37187-37193. [PMID: 35521242 PMCID: PMC9057134 DOI: 10.1039/d0ra07767d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/15/2020] [Indexed: 11/21/2022] Open
Abstract
Several piperazine bis(benzoxaboroles) have been obtained both in solution as well as in the solid state. The environmentally friendly mechanochemical approach – hitherto not applied for the preparation of benzoxaboroles – was particularly beneficial in the case of two products afforded in low yields in solution. The in vitro studies showed high potential of the studied bis(fluorobenzoxaboroles) as antifungal agents, highlighting also the influence of the fluorine substituent position on their microbiological activity. The highest activity against A. niger, A. terreus, P. ochrochloron, C. tenuis and C. albicans was displayed by the analogue of the known benzoxaborole antifungal drug Kerydin® (Tavaborole). Several piperazine bis(benzoxaboroles) have been obtained mechanochemically – two of them have been shown to display high antifungal activity.![]()
Collapse
Affiliation(s)
- Krzysztof M Borys
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Dorota Wieczorek
- Faculty of Chemistry, University of Opole Oleska 48 45-052 Opole Poland
| | - Magdalena Tarkowska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Agnieszka Jankowska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Jacek Lipok
- Faculty of Chemistry, University of Opole Oleska 48 45-052 Opole Poland
| | | |
Collapse
|
13
|
Adamczyk-Woźniak A, Sporzyński A. The influence of ortho-substituents on the properties of phenylboronic acids. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
5-Trifluoromethyl-2-formylphenylboronic Acid. Molecules 2020; 25:molecules25040799. [PMID: 32059517 PMCID: PMC7070739 DOI: 10.3390/molecules25040799] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 02/05/2023] Open
Abstract
2-Formylphenylboronic acids display many interesting features, not only from synthetic but also from an application as well as structural points of view. 5-Trifluoromethyl-2-formyl phenylboronic acid has been synthesized and characterized in terms of its structure and properties. The presence of an electron-withdrawing substituent results in a considerable rise in the acidity in comparison with its analogues. In some solutions, the title compound isomerizes with formation of the corresponding 3-hydroxybenzoxaborole. Taking into account the probable mechanism of antifungal action of benzoxaboroles, which blocks the cytoplasmic leucyl-tRNA synthetase (LeuRS) of the microorganism, docking studies with the active site of the enzymes have been carried out. It showed possible binding of the cyclic isomer into the binding pocket of Candida albicans LeuRS, similar to that of the recently approved benzoxaborole antifungal drug (AN2690, Tavaborole, Kerydin). In case of Escherichia coli LeuRS, the opened isomer displays a much higher inhibition constant in comparison with the cyclic one. The antimicrobial activity of the title compound was also investigated in vitro, showing moderate action against Candida albicans. The compound reveals higher activity against Aspergillus niger as well as bacteria such as Escherichia coli and Bacillus cereus. In case of Bacillus cereus, the determined Minimum Inhibitory Concentration (MIC) value is lower than that of AN2690 (Tavaborole). The results confirm potential of 2-formylphenylboronic acids as antibacterial agents and give a hint of their possible mechanism of action.
Collapse
|