1
|
Spinaci A, Buccioni M, Catarzi D, Cui C, Colotta V, Dal Ben D, Cescon E, Francucci B, Grieco I, Lambertucci C, Marucci G, Bassani D, Pavan M, Varano F, Federico S, Spalluto G, Moro S, Volpini R. "Dual Anta-Inhibitors" of the A 2A Adenosine Receptor and Casein Kinase CK1delta: Synthesis, Biological Evaluation, and Molecular Modeling Studies. Pharmaceuticals (Basel) 2023; 16:167. [PMID: 37259317 PMCID: PMC9960553 DOI: 10.3390/ph16020167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 08/13/2023] Open
Abstract
Based on a screening of a chemical library of A2A adenosine receptor (AR) antagonists, a series of di- and tri-substituted adenine derivatives were synthesized and tested for their ability to inhibit the activity of the enzyme casein kinase 1 delta (CK1δ) and to bind adenosine receptors (ARs). Some derivatives, here called "dual anta-inhibitors", demonstrated good CK1δ inhibitory activity combined with a high binding affinity, especially for the A2AAR. The N6-methyl-(2-benzimidazolyl)-2-dimethyamino-9-cyclopentyladenine (17, IC50 = 0.59 μM and KiA2A = 0.076 μM) showed the best balance of A2AAR affinity and CK1δ inhibitory activity. Computational studies were performed to simulate, at the molecular level, the protein-ligand interactions involving the compounds of our series. Hence, the dual anta-inhibitor 17 could be considered the lead compound of new therapeutic agents endowed with synergistic effects for the treatment of chronic neurodegenerative and cancer diseases.
Collapse
Affiliation(s)
- Andrea Spinaci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Michela Buccioni
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Daniela Catarzi
- Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Dipartimento di Neuroscienze, Psicologia, Università degli Studi di Firenze, Via Ugo Schiff, 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Chang Cui
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Vittoria Colotta
- Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Dipartimento di Neuroscienze, Psicologia, Università degli Studi di Firenze, Via Ugo Schiff, 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Diego Dal Ben
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Beatrice Francucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Gabriella Marucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Flavia Varano
- Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Dipartimento di Neuroscienze, Psicologia, Università degli Studi di Firenze, Via Ugo Schiff, 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Rosaria Volpini
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| |
Collapse
|
3
|
Saini A, Patel R, Gaba S, Singh G, Gupta GD, Monga V. Adenosine receptor antagonists: Recent advances and therapeutic perspective. Eur J Med Chem 2021; 227:113907. [PMID: 34695776 DOI: 10.1016/j.ejmech.2021.113907] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Adenosine is an endogenous purine-based nucleoside expressed nearly in all body tissues. It regulates various body functions by activating four G-protein coupled receptors, A1, A2A, A2B, and A3. These receptors are widely acknowledged as drug targets for treating different neurological, metabolic, and inflammatory diseases. Although numerous adenosine receptor inhibitors have been developed worldwide, achieving target selectivity is still a big hurdle in drug development. However, the identification of specific radioligands-based affinity assay, fluorescent ligands, and MS-based ligand assay have contributed to the development of selective and potent adenosine ligands. In recent years various small heterocyclic-based molecules have shown some promising results. Istradefylline has been approved for treating Parkinson's in Japan, while preladenant, tozadenant, CVT-6883, MRS-1523, and many more are under different phases of clinical development. The present review is focused on the quest to develop potent and selective adenosine inhibitors from 2013 to early 2021 by various research groups. The review also highlights their biological activity, selectivity, structure-activity relationship, molecular docking, and mechanistic studies. A special emphsesis on drug designing strategies has been also given the manuscript. The comprehensive compilation of research work carried out in the field will provide inevitable scope for designing and developing novel adenosine inhibitors with improved selectivity and efficacy.
Collapse
Affiliation(s)
- Anjali Saini
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Rajiv Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Sobhi Gaba
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| |
Collapse
|
4
|
Dal Ben D, Lambertucci C, Buccioni M, Martí Navia A, Marucci G, Spinaci A, Volpini R. Non-Nucleoside Agonists of the Adenosine Receptors: An Overview. Pharmaceuticals (Basel) 2019; 12:E150. [PMID: 31597388 PMCID: PMC6958362 DOI: 10.3390/ph12040150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 12/17/2022] Open
Abstract
Potent and selective adenosine receptor (AR) agonists are of pharmacological interest for the treatment of a wide range of diseases and conditions. Among these derivatives, nucleoside-based agonists represent the great majority of molecules developed and reported to date. However, the limited availability of compounds selective for a specific AR subtype (i.e., A2BAR) and a generally long and complex synthetic route for largely substituted nucleosides are the main drawbacks of this category of molecules. Non-nucleoside agonists represent an alternative set of compounds able to stimulate the AR function and based on simplified structures. This review provides an updated overview on the structural classes of non-nucleoside AR agonists and their biological activities, with emphasis on the main derivatives reported in the literature. A focus is also given to the synthetic routes employed to develop these derivatives and on molecular modeling studies simulating their interaction with ARs.
Collapse
Affiliation(s)
- Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| | - Michela Buccioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| | - Aleix Martí Navia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| | - Gabriella Marucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| | - Andrea Spinaci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy.
| |
Collapse
|