1
|
Zhang R, Neighbors J, Schell T, Hohl R. Schweinfurthin induces ICD without ER stress and caspase activation. Oncoimmunology 2022; 11:2104551. [PMID: 35936984 PMCID: PMC9354771 DOI: 10.1080/2162402x.2022.2104551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Our previous study showed that one of the schweinfurthin compounds, 5’-methoxyschweinfurthin G (MeSG), not only enhances the anti-tumor effect of anti-PD1 antibody in the B16F10 murine melanoma model, but also provokes durable, protective anti-tumor immunity. Here we further investigated the mechanisms by which MeSG treatment induces immunogenic cell death (ICD). MeSG induced significant cell surface calreticulin (CRT) exposure in a time and concentration dependent manner as well as increased phagocytosis of tumor cells by dendritic cells in vitro. Interestingly, this CRT exposure differs from the canonical pathway in several aspects. MeSG does not cause ER stress and does not require PERK to induce CRT exposure. Caspase inhibitors partially rescue cells from MeSG-induced apoptosis, but fail to reduce CRT exposure. MeSG does not cause ERp57 exposure and the absence of ERp57 expression does not reduce CRT exposure. Finally, an intact ER to Golgi transport system is required for this phenomenon. These results lend support to the development of the schweinfurthin family as drugs to enhance clinical response to immunotherapy and highlight the need for additional research on the mechanisms of ICD induction.
Collapse
Affiliation(s)
| | - J.D. Neighbors
- Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, Hershey, PA, USA
| | - T.D. Schell
- Penn State Cancer Institute, Hershey, PA, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - R.J. Hohl
- Department of Medicine, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, Hershey, PA, USA
| |
Collapse
|
2
|
Weissenrieder JS, Weissenkampen JD, Reed JL, Green MV, Zheng C, Neighbors JD, Liu DJ, Hohl RJ. RNAseq reveals extensive metabolic disruptions in the sensitive SF-295 cell line treated with schweinfurthins. Sci Rep 2022; 12:359. [PMID: 35013404 PMCID: PMC8748991 DOI: 10.1038/s41598-021-04117-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/29/2021] [Indexed: 02/08/2023] Open
Abstract
The schweinfurthin family of natural compounds exhibit a unique and potent differential cytotoxicity against a number of cancer cell lines and may reduce tumor growth in vivo. In some cell lines, such as SF-295 glioma cells, schweinfurthins elicit cytotoxicity at nanomolar concentrations. However, other cell lines, like A549 lung cancer cells, are resistant to schweinfurthin treatment up to micromolar concentrations. At this time, the precise mechanism of action and target for these compounds is unknown. Here, we employ RNA sequencing of cells treated with 50 nM schweinfurthin analog TTI-3066 for 6 and 24 h to elucidate potential mechanisms and pathways which may contribute to schweinfurthin sensitivity and resistance. The data was analyzed via an interaction model to observe differential behaviors between sensitive SF-295 and resistant A549 cell lines. We show that metabolic and stress-response pathways were differentially regulated in the sensitive SF-295 cell line as compared with the resistant A549 cell line. In contrast, A549 cell had significant alterations in response genes involved in translation and protein metabolism. Overall, there was a significant interaction effect for translational proteins, RNA metabolism, protein metabolism, and metabolic genes. Members of the Hedgehog pathway were differentially regulated in the resistant A549 cell line at both early and late time points, suggesting a potential mechanism of resistance. Indeed, when cotreated with the Smoothened inhibitor cyclopamine, A549 cells became more sensitive to schweinfurthin treatment. This study therefore identifies a key interplay with the Hedgehog pathway that modulates sensitivity to the schweinfurthin class of compounds.
Collapse
Affiliation(s)
- J. S. Weissenrieder
- grid.25879.310000 0004 1936 8972Department of Physiology, University of Pennsylvania, Philadelphia, PA USA ,grid.240473.60000 0004 0543 9901Department of Medicine, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Penn State Cancer Institute, Penn State College of Medicine, 500 University Drive, Mail Code CH72, Hershey, PA 17033-0850 USA
| | - J. D. Weissenkampen
- grid.240473.60000 0004 0543 9901Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA USA ,grid.25879.310000 0004 1936 8972Department of Genetics, University of Pennsylvania, Philadelphia, PA USA
| | - J. L. Reed
- grid.240473.60000 0004 0543 9901Department of Medicine, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Penn State Cancer Institute, Penn State College of Medicine, 500 University Drive, Mail Code CH72, Hershey, PA 17033-0850 USA
| | - M. V. Green
- grid.240473.60000 0004 0543 9901Department of Medicine, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Penn State Cancer Institute, Penn State College of Medicine, 500 University Drive, Mail Code CH72, Hershey, PA 17033-0850 USA
| | - C. Zheng
- grid.214572.70000 0004 1936 8294Department of Pharmacology, The University of Iowa, Iowa City, IA USA
| | - J. D. Neighbors
- grid.240473.60000 0004 0543 9901Department of Medicine, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Penn State Cancer Institute, Penn State College of Medicine, 500 University Drive, Mail Code CH72, Hershey, PA 17033-0850 USA
| | - D. J. Liu
- grid.240473.60000 0004 0543 9901Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA USA
| | - Raymond J. Hohl
- grid.240473.60000 0004 0543 9901Department of Medicine, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA ,grid.240473.60000 0004 0543 9901Penn State Cancer Institute, Penn State College of Medicine, 500 University Drive, Mail Code CH72, Hershey, PA 17033-0850 USA
| |
Collapse
|
3
|
Abstract
The natural schweinfurthins are stilbenes with significant antiproliferative activity and an uncertain mechanism of action. To obtain a fluorescent analogue with minimal deviation from the natural structure, a coumarin ring system was annulated to the D-ring, creating a new analogue of schweinfurthin F. This stilbene was prepared through a convergent synthesis, with a Horner-Wadsworth-Emmons condensation employed to form the central stilbene olefin. After preparation of a tricyclic phosphonate via a recent and more efficient modification of the classic Arbuzov reaction, condensation was attempted with an appropriately substituted bicyclic aldehyde but the coumarin system did not survive the reaction conditions. When olefin formation preceded generation of the coumarin, the stilbene formation proceeded smoothly and ultimately allowed access to the targeted coumarin-based schweinfurthin analogue. This analogue displayed the desired fluorescence properties along with significant biological activity in the National Cancer Institute's 60-cell line bioassay, and the pattern of this biological activity mirrored that of the natural product schweinfurthin F. This approach gives facile access to new fluorescent analogues of the natural schweinfurthins and should be applicable to other natural stilbenes as well.
Collapse
Affiliation(s)
- Chloe M Schroeder
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Patrick N Dey
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - John A Beutler
- Molecular Targets Program, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702, United States
| | - David F Wiemer
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| |
Collapse
|