1
|
Zhang M, Mi M, Hu Z, Li L, Chen Z, Gao X, Liu D, Xu B, Liu Y. Polydopamine-Based Biomaterials in Orthopedic Therapeutics: Properties, Applications, and Future Perspectives. Drug Des Devel Ther 2024; 18:3765-3790. [PMID: 39219693 PMCID: PMC11363944 DOI: 10.2147/dddt.s473007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Polydopamine is a versatile and modifiable polymer, known for its excellent biocompatibility and adhesiveness. It can also be engineered into a variety of nanoparticles and biomaterials for drug delivery, functional modification, making it an excellent choice to enhance the prevention and treatment of orthopedic diseases. Currently, the application of polydopamine biomaterials in orthopedic disease prevention and treatment is in its early stages, despite some initial achievements. This article aims to review these applications to encourage further development of polydopamine for orthopedic therapeutic needs. We detail the properties of polydopamine and its biomaterial types, highlighting its superior performance in functional modification on nanoparticles and materials. Additionally, we also explore the challenges and future prospects in developing optimal polydopamine biomaterials for clinical use in orthopedic disease prevention and treatment.
Collapse
Affiliation(s)
- Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Man Mi
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zilong Hu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Lixian Li
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zhiping Chen
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Di Liu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Bilian Xu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| |
Collapse
|
2
|
Vidar Hansen T, Serhan CN. Protectins: Their biosynthesis, metabolism and structure-functions. Biochem Pharmacol 2022; 206:115330. [PMID: 36341938 PMCID: PMC9838224 DOI: 10.1016/j.bcp.2022.115330] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 01/17/2023]
Abstract
Several lipoxygenase enzymes and cyclooxygenase-2 stereoselectively convert the polyunsaturated fatty acids arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid, and n-3 docosapentaenoic acid into numerous oxygenated products. Biosynthetic pathway studies have shown, during the resolution phase of acute inflammation, that distinct families of endogenous products are formed. These products were named specialized pro-resolving mediators, given their specialized functions in the inflammation-resolution circuit, enhancing the return of inflamed and injured tissue to homeostasis. The lipoxins, resolvins, protectins and maresins, together with the sulfido-conjugates of the resolvins, protectins and maresins, constitute the four individual families of these local mediators. When administrated in vivo in a wide range of human disease models, the specialized pro-resolving mediators display potent bioactions. The detailed and individual biosynthetic steps constituting the biochemical pathways, the metabolism, recent reports on structure-function studies and pharmacodynamic data of the protectins, are presented herein. Emphasis is on the structure-function results on the recent members of the sulfido conjugated protectins and further metabolism of protectin D1. Moreover, the members of the individual families of specialized pro-resolving mediators and their biosynthetic precursor are presented. Today 43 specialized pro-resolving mediators possessing pro-resolution and anti-inflammatory bioactions are reported and confirmed, constituting a basis for resolution pharmacology. This emerging biomedical field provides a new approach for drug discovery, that is also discussed.
Collapse
Affiliation(s)
- Trond Vidar Hansen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Hale Building for Transformative Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, United States.
| |
Collapse
|
3
|
Gjessing G, Johnsen LIG, Antonsen SG, Nolsøe JMJ, Stenstrøm Y, Hansen TV. The Synthesis of 3-(R)- and 3-(S)-Hydroxyeicosapentaenoic Acid. Molecules 2022; 27:molecules27072295. [PMID: 35408694 PMCID: PMC9000449 DOI: 10.3390/molecules27072295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Monohydroxylated polyunsaturated fatty acids belonging to the oxylipin class of natural products are present in marine and terrestrial sources as well as in the human body. Due to their biological activities and role in diverse biosynthetic pathways, oxylipins biosynthesized from eicosapentaenoic acid and arachidonic acid have attracted great interest from the scientific community. One example is 3-hydroxyeicosapentaenoic acid where the absolute configuration at C-3 has only been tentatively assigned. In this paper, studies on acetate type aldol reactions that enabled the preparation of 3-(R)-hydroxyeicosapentaenoic acid (3R-HETE, 2) and its enantiomer are presented.
Collapse
Affiliation(s)
- Gard Gjessing
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1433 Ås, Norway; (G.G.); (S.G.A.); (J.M.J.N.)
| | - Lars-Inge Gammelsæter Johnsen
- Section of Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, NO-0316 Oslo, Norway;
| | - Simen Gjelseth Antonsen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1433 Ås, Norway; (G.G.); (S.G.A.); (J.M.J.N.)
- Department of Mechanical, Electronic and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet, P.O. Box 4, St. Olavs Plass, NO-0130 Oslo, Norway
| | - Jens M. J. Nolsøe
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1433 Ås, Norway; (G.G.); (S.G.A.); (J.M.J.N.)
| | - Yngve Stenstrøm
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1433 Ås, Norway; (G.G.); (S.G.A.); (J.M.J.N.)
- Correspondence: (Y.S.); (T.V.H.)
| | - Trond Vidar Hansen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1433 Ås, Norway; (G.G.); (S.G.A.); (J.M.J.N.)
- Section of Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, NO-0316 Oslo, Norway;
- Correspondence: (Y.S.); (T.V.H.)
| |
Collapse
|
4
|
Nesman JI, Chen O, Luo X, Ji RR, Serhan CN, Hansen TV. A new synthetic protectin D1 analog 3-oxa-PD1 n-3 DPA reduces neuropathic pain and chronic itch in mice. Org Biomol Chem 2021; 19:2744-2752. [PMID: 33687402 PMCID: PMC8016805 DOI: 10.1039/d0ob02136a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The resolution of inflammation is a biosynthetically active process controlled by the interplay between oxygenated polyunsaturated mediators and G-protein coupled receptor-signaling pathways. These enzymatically oxygenated polyunsaturated fatty acids belong to distinct families of specialized pro-resolving autacoids. The protectin family of mediators has attracted an interest because of their potent pro-resolving and anti-inflammatory actions verified in several in vivo disease models. Herein, we present the stereoselective synthesis and biological evaluations of 3-oxa-PD1n-3 DPA, a protectin D1 analog. Results from mouse models indicate that the mediators protectin D1, PD1n-3 DPA and the new analog 3-oxa-PD1n-3 DPA all relieved streptozotocin-induced diabetic neuropathic pain at doses of 90 and 300 pmol, equivalent to 30 and 100 ng, respectively, following intrathecal (I.T.) injection. Of interest, at a low dose of only 30 pmol (10 ng; I.T.) only 3-oxa PD1n-3 DPA was able to alleviate neuropathic pain, directly compared to vehicle controls. Moreover, using a chronic itch model of cutaneous T-cell lymphoma (CTCL), all three compounds at 300 pmol (100 ng) showed a significant reduction in itching for several hours. The biomolecular information on the structure-functions of the protectins and the new synthetic analog 3-oxa-PD1n-3 DPA is of interest towards developing new immunoresolvents.
Collapse
Affiliation(s)
- Jannicke Irina Nesman
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
5
|
Tungen J, Primdahl KG, Hansen TV. The First Total Synthesis of the Lipid Mediator PD2 n-3 DPA. JOURNAL OF NATURAL PRODUCTS 2020; 83:2255-2260. [PMID: 32543839 PMCID: PMC7467816 DOI: 10.1021/acs.jnatprod.0c00385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 05/05/2023]
Abstract
The resolution of inflammation is governed by the active biosynthesis of specialized pro-resolving mediators using ω-6 and ω-3 polyunsaturated fatty acids as substrates. These mediators act as resolution agonists and display several interesting bioactivities. PD2n-3 DPA is an oxygenated polyunsaturated fatty acid biosynthesized from n-3 docosapentaenoic acid belonging to the specialized pro-resolving lipid mediator family named protectins. The protectins exhibit anti-inflammatory properties and pro-resolving bioactivities. These endogenously produced compounds are of interest as leads in resolution pharmacology and drug development. Herein, together with its NMR, MS, and UV data, a stereoselective total synthesis of PD2n-3 DPA is presented.
Collapse
Affiliation(s)
- Jørn
Eivind Tungen
- Department
of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - Karoline Gangestad Primdahl
- Department
of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - Trond Vidar Hansen
- Department
of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| |
Collapse
|