1
|
Zeng LR, Pan BW, Cai J, Liu LJ, Dong ZC, Zhou Y, Feng TT, Shi Y. Construction, structural modification, and bioactivity evaluation of pentacyclic triterpenoid privileged scaffolds in active natural products. RSC Adv 2024; 14:39436-39461. [PMID: 39679419 PMCID: PMC11640457 DOI: 10.1039/d4ra07602h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
Pentacyclic triterpenoids, as important representatives of natural products, have garnered widespread attention due to their diverse biological activities, including anti-inflammatory, antiviral, and antitumor effects. Oleanolic acid (OA), betulinic acid (BA), ursolic acid (UA), triptolide, and glycyrrhetinic acid (GA) are typical examples of pentacyclic triterpenoids. Despite their significant biological activities, their poor water solubility and low bioavailability have limited further development and application. In recent years, researchers have developed a series of derivatives with enhanced biological activities and improved drug properties through structural modifications of these compounds, particularly achieving notable progress in the field of antitumor therapy. This review summarizes recent advances in the structural modification of pentacyclic triterpenoids and explores their promising applications in the development of antitumor, antiviral, and other therapeutic agents.
Collapse
Affiliation(s)
- Ling Rong Zeng
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Bo Wen Pan
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Juan Cai
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Li Juan Liu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Zhang Chao Dong
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Ting Ting Feng
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Yang Shi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| |
Collapse
|
2
|
Abchir O, Khedraoui M, Nour H, Yamari I, Errougui A, Samadi A, Chtita S. Integrative Approach for Designing Novel Triazole Derivatives as α-Glucosidase Inhibitors: QSAR, Molecular Docking, ADMET, and Molecular Dynamics Investigations. Pharmaceuticals (Basel) 2024; 17:261. [PMID: 38399476 PMCID: PMC10892212 DOI: 10.3390/ph17020261] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
In response to the increasing prevalence of diabetes mellitus and the limitations associated with the current treatments, there is a growing need to develop novel medications for this disease. This study is focused on creating new compounds that exhibit a strong inhibition of alpha-glucosidase, which is a pivotal enzyme in diabetes control. A set of 33 triazole derivatives underwent an extensive QSAR analysis, aiming to identify the key factors influencing their inhibitory activity against α-glucosidase. Using the multiple linear regression (MLR) model, seven promising compounds were designed as potential drugs. Molecular docking and dynamics simulations were employed to shed light on the mode of interaction between the ligands and the target, and the stability of the obtained complexes. Furthermore, the pharmacokinetic properties of the designed compounds were assessed to predict their behavior in the human body. The binding free energy was also calculated using MMGBSA method and revealed favorable thermodynamic properties. The results highlighted three novel compounds with high biological activity, strong binding affinity to the target enzyme, and suitability for oral administration. These results offer interesting prospects for the development of effective and well-tolerated medications against diabetes mellitus.
Collapse
Affiliation(s)
- Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 7955, Morocco; (O.A.); (M.K.); (A.E.)
| | - Meriem Khedraoui
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 7955, Morocco; (O.A.); (M.K.); (A.E.)
| | - Hassan Nour
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 7955, Morocco; (O.A.); (M.K.); (A.E.)
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 7955, Morocco; (O.A.); (M.K.); (A.E.)
| | - Abdelkbir Errougui
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 7955, Morocco; (O.A.); (M.K.); (A.E.)
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 7955, Morocco; (O.A.); (M.K.); (A.E.)
| |
Collapse
|
3
|
Yan R, Liu L, Huang X, Quan ZS, Shen QK, Guo HY. Bioactivities and Structure-Activity Relationships of Maslinic Acid Derivatives: A Review. Chem Biodivers 2024; 21:e202301327. [PMID: 38108648 DOI: 10.1002/cbdv.202301327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Maslinic acid has a variety of biological activities, such as anti-tumor, hypoglycemic, anti-inflammatory, and anti-parasitic. In order to enhance the biological activity of maslinic acid, scholars have carried out a lot of structural modifications, and found some more valuable maslinic acid derivatives. In this paper, the structural modification, biological activity, and structure-activity relationship of maslinic acid were reviewed, providing references for the development of maslinic acid.
Collapse
Affiliation(s)
- Rui Yan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Luguang Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong, P. R. China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| |
Collapse
|
4
|
Dubinin MV, Nedopekina DA, Ilzorkina AI, Semenova AA, Sharapov VA, Davletshin EV, Mikina NV, Belsky YP, Spivak AY, Akatov VS, Belosludtseva NV, Liu J, Belosludtsev KN. Conjugation of Triterpenic Acids of Ursane and Oleanane Types with Mitochondria-Targeting Cation F16 Synergistically Enhanced Their Cytotoxicity against Tumor Cells. MEMBRANES 2023; 13:563. [PMID: 37367767 DOI: 10.3390/membranes13060563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
The present work shows the cytotoxic effects of novel conjugates of ursolic, oleanolic, maslinic, and corosolic acids with the penetrating cation F16 on cancer cells (lung adenocarcinoma A549 and H1299, breast cancer cell lines MCF-7 and BT474) and non-tumor human fibroblasts. It has been established that the conjugates have a significantly enhanced toxicity against tumor-derived cells compared to native acids and also demonstrate selectivity to some cancer cells. The toxic effect of the conjugates is shown to be due to ROS hyperproduction in cells, induced by the effect on mitochondria. The conjugates caused dysfunction of isolated rat liver mitochondria and, in particular, a decrease in the efficiency of oxidative phosphorylation, a decrease in the membrane potential, and also an overproduction of ROS by organelles. The paper discusses how the membranotropic- and mitochondria-targeted effects of the conjugates may be related to their toxic effects.
Collapse
Affiliation(s)
- Mikhail V Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Darya A Nedopekina
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia
| | - Anna I Ilzorkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| | - Alena A Semenova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Vyacheslav A Sharapov
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Eldar V Davletshin
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia
| | - Natalia V Mikina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Yuri P Belsky
- Centre of Preclinical Translational Research, Almazov National Medical Research Centre, St. Petersburg 197371, Russia
| | - Anna Yu Spivak
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia
| | - Vladimir S Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| | - Natalia V Belosludtseva
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| | - Jiankang Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Konstantin N Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| |
Collapse
|
5
|
Recent developments in synthetic α-glucosidase inhibitors: A comprehensive review with structural and molecular insight. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Nistor G, Trandafirescu C, Prodea A, Milan A, Cristea A, Ghiulai R, Racoviceanu R, Mioc A, Mioc M, Ivan V, Șoica C. Semisynthetic Derivatives of Pentacyclic Triterpenes Bearing Heterocyclic Moieties with Therapeutic Potential. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196552. [PMID: 36235089 PMCID: PMC9572482 DOI: 10.3390/molecules27196552] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022]
Abstract
Medicinal plants have been used by humans since ancient times for the treatment of various diseases and currently represent the main source of a variety of phytocompounds, such as triterpenes. Pentacyclic triterpenes have been subjected to numerous studies that have revealed various biological activities, such as anticancer, antidiabetic, anti-inflammatory, antimicrobial, and hepatoprotective effects, which can be employed in therapy. However, due to their high lipophilicity, which is considered to exert a significant influence on their bioavailability, their current use is limited. A frequent approach employed to overcome this obstacle is the chemical derivatization of the core structure with different types of moieties including heterocycles, which are considered key elements in medicinal chemistry. The present review aims to summarize the literature published in the last 10 years regarding the derivatives of pentacyclic triterpenes bearing heterocyclic moieties and focuses on the biologically active derivatives as well as their structure-activity relationships. Predominantly, the targeted positions for the derivatization of the triterpene skeleton are C-3 (hydroxyl/oxo group), C-28 (hydroxyl/carboxyl group), and C-30 (allylic group) or the extension of the main scaffold by fusing various heterocycles with the A-ring of the phytocompound. In addition, numerous derivatives also contain linker moieties that connect the triterpenic scaffold with heterocycles; one such linker, the triazole moiety, stands out as a key pharmacophore for its biological effect. All these studies support the hypothesis that triterpenoid conjugates with heterocyclic moieties may represent promising candidates for future clinical trials.
Collapse
Affiliation(s)
- Gabriela Nistor
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Cristina Trandafirescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Correspondence: (A.P.); (A.M.); Tel.: +40-256-494-604 (A.P.)
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Correspondence: (A.P.); (A.M.); Tel.: +40-256-494-604 (A.P.)
| | - Andreea Cristea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Viviana Ivan
- Department of Internal Medicine II, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Codruța Șoica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| |
Collapse
|
7
|
Fan XZ, Zhu YL, Yuan RW, Deng L, Hou C, Li W, Liu T, Kong XQ, Zhang LJ, Liao HB. Terpenoids with α-glucosidase inhibitory activity from Rhododendron minutiflorum Hu. PHYTOCHEMISTRY 2022; 196:113083. [PMID: 34999512 DOI: 10.1016/j.phytochem.2021.113083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Five undescribed triterpenoids, two unusual omphalane-type sesquiterpenoids together with twenty-five known compounds were isolated from the leaves and stems of Rhododendron minutiflorum Hu. The absolute configurations of 1-3 and 6 were established by single-crystal X-ray diffraction analysis and electronic circular dichroism (ECD). Compounds 6-7 feature the rare omphalane-type sesquiterpene skeleton and are verified by single-crystal X-ray diffraction analysis for the first time. In the biological activity assay, most of the triterpenoids have different degrees of inhibitory effects on α-glucosidase, with IC50 values ranging from 6.97 to 229.3 μM (the positive control drug acarbose has an IC50 value of 3.07 × 10-3 μM). Structure and activity relationship (SAR) study reveals that the oxidation degrees of C-3, C-8, or C-11 to C-13 of the ursane-type triterpenoid influence the inhibitory activity dramatically.
Collapse
Affiliation(s)
- Xian-Zhe Fan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Yang-Li Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Rong-Wen Yuan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Li Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Cheng Hou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Wei Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Ting Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Xiang-Qian Kong
- Center for Chemical Biology and Drug Discovery, GuangZhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou, 510530, People's Republic of China
| | - Li-Jun Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
| | - Hai-Bing Liao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
| |
Collapse
|
8
|
Wei H, Guo J, Sun X, Gou W, Ning H, Fang Z, Liu Q, Hou W, Li Y. Discovery and radiosensitization research of ursolic acid derivatives as SENP1 inhibitors. Eur J Med Chem 2022; 227:113918. [PMID: 34688014 DOI: 10.1016/j.ejmech.2021.113918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/11/2022]
Abstract
SUMOylation and deSUMOylation plays an important role in DNA damage response and the formation of radiotherapy resistance. SENP1 is the main specific isopeptidase to catalyze deSUMOylation modification. Inhibiting SENP1 upregulates cancer cell radiosensitivity and it becomes a promising target for radiosensitization. Herein, based on the structure of ursolic acid (UA), a total of 53 pentacyclic triterpene derivatives were designed and synthesized as SENP1 inhibitors. Ten derivatives exhibited better SENP1 inhibitory activities than UA and the preliminary structure-activity relationship was discussed. Most of the UA derivatives were low-cytotoxic, among which compound 36 showed the best radiosensitizing activity with the SER value of 1.45. It was the first study to develop small molecular SENP1 inhibitors as radiosensitizers.
Collapse
Affiliation(s)
- Huiqiang Wei
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Jianghong Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Xiao Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wenfeng Gou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Hongxin Ning
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Zhennan Fang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.
| | - Wenbin Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.
| |
Collapse
|
9
|
Qian XP, Zhang XH, Sun LN, Xing WF, Wang Y, Sun SY, Ma MY, Cheng ZP, Wu ZD, Xing C, Chen BN, Wang YQ. Corosolic acid and its structural analogs: A systematic review of their biological activities and underlying mechanism of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153696. [PMID: 34456116 DOI: 10.1016/j.phymed.2021.153696] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The corosolic acid (CA), also known as plant insulin, is a pentacyclic triterpenoid extracted from plants such as Lagerstroemia speciosa. It has been shown to have anti-diabetic, anti-inflammatory and anti-tumor effects. Its structural analogs ursolic acid (UA), oleanolic acid (OA), maslinic acid (MA), asiatic acid (AA) and betulinic acid (BA) display similar individual pharmacological activities to those of CA. However, there is no systematic review documenting pharmacological activities of CA and its structural analogues. This study aims to fill this gap in literature. PURPOSE This systematic review aims to summarize the medical applications of CA and its analogues. METHODS A systematic review summarizes and compares the extraction techniques, pharmacokinetic parameters, and pharmacological effects of CA and its structural analogs. Hypoglycemic effect is one of the key inclusion criteria for searching Web of Science, PubMed, Embase and Cochrane databases up to October 2020 without language restrictions. 'corosolic acid', 'ursolic acid', 'oleanolic acid', 'maslinic acid', 'asiatic acid', 'betulinic acid', 'extraction', 'pharmacokinetic', 'pharmacological' were used to extract relevant literature. The PRISMA guidelines were followed. RESULTS At the end of the searching process, 140 articles were selected for the systematic review. Information of CA and five of its structural analogs including UA, OA, MA, AA and BA were included in this review. CA and its structural analogs are pentacyclic triterpenes extracted from plants and they have low solubilities in water due to their rigid scaffold and hydrophobic properties. The introduction of water-soluble groups such as sugar or amino groups could increase the solubility of CA and its structural analogs. Their biological activities and underlying mechanism of action are reviewed and compared. CONCLUSION CA and its structural analogs UA, OA, MA, AA and BA are demonstrated to show activities in lowering blood sugar, anti-inflammation and anti-tumor. Their oral absorption and bioavailability can be improved through structural modification and formulation design. CA and its structural analogs are promising natural product-based lead compounds for further development and mechanistic studies.
Collapse
Affiliation(s)
- Xu-Ping Qian
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Xuzhou Medical University, Xuzhou, China
| | - Xue-Hui Zhang
- Department of Pharmacy, Jiangsu Shengze Hospital, Nanjing Medical University, Suzhou, China
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Wei-Fan Xing
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Yu Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Shi-Yu Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Meng-Yuan Ma
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Xuzhou Medical University, Xuzhou, China
| | - Zi-Ping Cheng
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Zu-Dong Wu
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Chen Xing
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Bei-Ning Chen
- Department of Chemistry, University of Sheffield, Brookhill, Sheffield S3 7HF, United Kingdom.
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Jiangsu Shengze Hospital, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
10
|
Huang J, Zang X, Yang W, Yin X, Huang J, Wu S, Hong Y. Pentacyclic triterpene carboxylic acids derivatives integrated piperazine-amino acid complexes for α-glucosidase inhibition in vitro. Bioorg Chem 2021; 115:105212. [PMID: 34333423 DOI: 10.1016/j.bioorg.2021.105212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022]
Abstract
Eighteen derivatives of pentacyclic triterpene carboxylic acids (Maslinic acid, Corosolic acid and Asiatic acid) have been prepared by coupling the piperazine complex of l-amino acids at the C-28 site of the parent compounds. The α-glucosidase inhibitory activities of the pristine derivatives were evaluated in vitro. The results indicated that the inhibitory activity of some compounds (15e IC50 = 591 μM, 16e IC50 = 423 μM) was closed to that of the reference acarbose (IC50 = 347 μM) in ethanol-water system. In addition, compound 16e (IC50 = 380 μM) showed superior inhibitory activity than acarbose (IC50 = 493 μM) in the measurement system with DMSO as solvent. The comparison of two different solvent systems showed that the derivatives had better α-glucosidase inhibitory activity in the DMSO system than that of in ethanol-water system. Regrettably, all of the as-synthesized derivatives exhibited inferior α-glucosidase inhibitory activities than those of the parent compounds in both test solvent systems. Furthermore, the result of enzyme kinetics demonstrated that the inhibition mechanism of compound 16e was noncompetitive inhibition with the inhibition constant Ki = 552 μM.
Collapse
Affiliation(s)
- Jinxiang Huang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xufeng Zang
- Department of Applied Physics, Huzhou University, Huzhou 313000, China
| | - Wuying Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoli Yin
- Library of Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianping Huang
- College of Science, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Shumin Wu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanping Hong
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
11
|
Kazakova OB, Giniyatullina GV, Mustafin AG, Babkov DA, Sokolova EV, Spasov AA. Evaluation of Cytotoxicity and α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids. Molecules 2020; 25:E4833. [PMID: 33092246 PMCID: PMC7587962 DOI: 10.3390/molecules25204833] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
A series of two new and twenty earlier synthesized branched extra-amino-triterpenoids obtained by the direct coupling of betulinic/betulonic acids with polymethylenpolyamines, or by the cyanoethylation of lupane type alcohols, oximes, amines, and amides with the following reduction were evaluated for cytotoxicity toward the NCI-60 cancer cell line panel, α-glucosidase inhibitory, and antimicrobial activities. Lupane carboxamides, conjugates with diaminopropane, triethylenetetramine, and branched C3-cyanoethylated polyamine methyl betulonate showed high cytotoxic activity against most of the tested cancer cell lines with GI50 that ranged from 1.09 to 54.40 µM. Betulonic acid C28-conjugate with triethylenetetramine and C3,C28-bis-aminopropoxy-betulin were found to be potent micromolar inhibitors of yeast α-glucosidase and to simultaneously inhibit the endosomal reticulum α-glucosidase, rendering them as potentially capable to suppress tumor invasiveness and neovascularization, in addition to the direct cytotoxicity. Plausible mechanisms of cytotoxic action and underlying disrupted molecular pathways were elucidated with CellMinner pattern analysis and Gene Ontology enrichment analysis, according to which the lead compounds exert multi-target antiproliferative activity associated with oxidative stress induction and chromatin structure alteration. The betulonic acid diethylentriamine conjugate showed partial activity against methicillin-resistant S. aureus and the fungi C. neoformans. These results show that triterpenic polyamines, being analogs of steroidal squalamine and trodusquemine, are important substances for the search of new drugs with anticancer, antidiabetic, and antimicrobial activities.
Collapse
Affiliation(s)
- Oxana B. Kazakova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 pr. Oktyabrya, 450054 Ufa, Russia; (G.V.G.); (A.G.M.)
| | - Gul’nara V. Giniyatullina
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 pr. Oktyabrya, 450054 Ufa, Russia; (G.V.G.); (A.G.M.)
| | - Akhat G. Mustafin
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 pr. Oktyabrya, 450054 Ufa, Russia; (G.V.G.); (A.G.M.)
| | - Denis A. Babkov
- Laboratory of Metabotropic Drugs, Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, 400087 Volgograd, Russia; (D.A.B.); (E.V.S.)
| | - Elena V. Sokolova
- Laboratory of Metabotropic Drugs, Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, 400087 Volgograd, Russia; (D.A.B.); (E.V.S.)
| | - Alexander A. Spasov
- Laboratory of Metabotropic Drugs, Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, 400087 Volgograd, Russia; (D.A.B.); (E.V.S.)
| |
Collapse
|