1
|
Lorca M, Muscia GC, Pérez-Benavente S, Bautista JM, Acosta A, González C, Sabadini G, Mella J, Asís SE, Mellado M. 2D/3D-QSAR Model Development Based on a Quinoline Pharmacophoric Core for the Inhibition of Plasmodium falciparum: An In Silico Approach with Experimental Validation. Pharmaceuticals (Basel) 2024; 17:889. [PMID: 39065740 PMCID: PMC11279914 DOI: 10.3390/ph17070889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Malaria is an infectious disease caused by Plasmodium spp. parasites, with widespread drug resistance to most antimalarial drugs. We report the development of two 3D-QSAR models based on comparative molecular field analysis (CoMFA), comparative molecular similarity index analysis (CoMSIA), and a 2D-QSAR model, using a database of 349 compounds with activity against the P. falciparum 3D7 strain. The models were validated internally and externally, complying with all metrics (q2 > 0.5, r2test > 0.6, r2m > 0.5, etc.). The final models have shown the following statistical values: r2test CoMFA = 0.878, r2test CoMSIA = 0.876, and r2test 2D-QSAR = 0.845. The models were experimentally tested through the synthesis and biological evaluation of ten quinoline derivatives against P. falciparum 3D7. The CoMSIA and 2D-QSAR models outperformed CoMFA in terms of better predictive capacity (MAE = 0.7006, 0.4849, and 1.2803, respectively). The physicochemical and pharmacokinetic properties of three selected quinoline derivatives were similar to chloroquine. Finally, the compounds showed low cytotoxicity (IC50 > 100 µM) on human HepG2 cells. These results suggest that the QSAR models accurately predict the toxicological profile, correlating well with experimental in vivo data.
Collapse
Affiliation(s)
- Marcos Lorca
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile; (M.L.); (G.S.)
| | - Gisela C. Muscia
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAB Ciudad Autónoma de Buenos Aires, Buenos Aires 1113, Argentina;
| | - Susana Pérez-Benavente
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (S.P.-B.); (J.M.B.)
| | - José M. Bautista
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (S.P.-B.); (J.M.B.)
| | - Alison Acosta
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Viña del Mar 2531015, Chile;
| | - Cesar González
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 2390123, Chile;
| | - Gianfranco Sabadini
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile; (M.L.); (G.S.)
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile; (M.L.); (G.S.)
- Centro de Investigacion, Desarrollo e Innovacion de Productos Bioactivos (CInBIO), Universidad de Valparaiso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile
| | - Silvia E. Asís
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAB Ciudad Autónoma de Buenos Aires, Buenos Aires 1113, Argentina;
| | - Marco Mellado
- Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
| |
Collapse
|
2
|
Kaur P, Rangra NK. Recent Advancements and SAR Studies of Synthetic Coumarins as MAO-B Inhibitors: An Updated Review. Mini Rev Med Chem 2024; 24:1834-1846. [PMID: 38778598 DOI: 10.2174/0113895575290599240503080025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The oxidative deamination of a wide range of endogenous and exogenous amines is catalyzed by a family of enzymes known as monoamine oxidases (MAOs), which are reliant on flavin-adenine dinucleotides. Numerous neurological conditions, such as Parkinson's disease (PD) and Alzheimer's disease (AD), are significantly correlated with changes in the amounts of biogenic amines in the brain caused by MAO. Hydrogen peroxide, reactive oxygen species, and ammonia, among other toxic consequences of this oxidative breakdown, can harm brain cells' mitochondria and cause oxidative damage. OBJECTIVE The prime objective of this review article was to highlight and conclude the recent advancements in structure-activity relationships of synthetic derivatives of coumarins for MAO-B inhibition, published in the last five years' research articles. METHODS The literature (between 2019 and 2023) was searched from platforms like Science Direct, Google Scholar, PubMed, etc. After going through the literature, we have found a number of coumarin derivatives being synthesized by researchers for the inhibition of MAO-B for the management of diseases associated with the enzyme such as Alzheimer's Disease and Parkinson's Disease. The effect of these coumarin derivatives on the enzyme depends on the substitutions associated with the structure. The structure-activity relationships of the synthetic coumarin derivatives that are popular nowadays have been described and summarized in the current study. RESULTS The results revealed the updated review on SAR studies of synthetic coumarins as MAO-B inhibitors, specifically for Alzheimer's Disease and Parkinson's Disease. The patents reported on coumarin derivatives as MAO-B inhibitors were also highlighted. CONCLUSION Recently, coumarins, a large class of chemicals with both natural and synthetic sources, have drawn a lot of attention because of the vast range of biological actions they have that are linked to neurological problems. Numerous studies have demonstrated that chemically produced and naturally occurring coumarin analogs both exhibited strong MAO-B inhibitory action. Coumarins bind to MAO-B reversibly thereby preventing the breakdown of neurotransmitters like dopamine leading to the inhibition of the enzyme A number of MAO-B blockers have been proven to be efficient therapies for treating neurological diseases like Alzheimer's Disease and Parkinson's Disease. To combat these illnesses, there is still an urgent need to find effective treatment compounds.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Naresh Kumar Rangra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, 174103, India
| |
Collapse
|
3
|
Cabezas D, Mellado G, Espinoza N, Gárate JA, Morales C, Castro-Alvarez A, Matos MJ, Mellado M, Mella J. In silico approaches to develop new phenyl-pyrimidines as glycogen synthase kinase 3 (GSK-3) inhibitors with halogen-bonding capabilities: 3D-QSAR CoMFA/CoMSIA, molecular docking and molecular dynamics studies. J Biomol Struct Dyn 2023; 41:13250-13259. [PMID: 36718094 DOI: 10.1080/07391102.2023.2172457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) is involved in different diseases, such as manic-depressive illness, Alzheimer's disease and cancer. Studies have shown that insulin inhibits GSK-3 to keep glycogen synthase active. Inhibiting GSK-3 may have an indirect pro-insulin effect by favouring glycogen synthesis. Therefore, the development of GSK-3 inhibitors can be a useful alternative for the treatment of type II diabetes. Aminopyrimidine derivatives already proved to be interesting GSK-3 inhibitors. In the current study, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) have been performed on a series of 122 aminopyrimidine derivatives in order to generate a robust model for the rational design of new compounds with promising antidiabetic activity. The q2 values obtained for the best CoMFA and CoMSIA models have been 0.563 and 0.598, respectively. In addition, the r2 values have been 0.823 and 0.925 for CoMFA and CoMSIA, respectively. The models were statistically validated, and from the contour maps analysis, a proposal of 10 new compounds has been generated, with predicted pIC50 higher than 9. The final contribution of our work is that: (a) we provide an extensive structure-activity relationship for GSK-3 inhibitory pyrimidines; and (b) these models may speed up the discovery of GSK-3 inhibitors based on the aminopyrimidine scaffold. Finally, we carried out docking and molecular dynamics studies of the two best candidates, which were shown to establish halogen-bond interactions with the enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- David Cabezas
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Guido Mellado
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nicolás Espinoza
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - José Antonio Gárate
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad San Sebastián, Santiago, Chile
| | - César Morales
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo OHiggins, Santiago, Chile
| | - Alejandro Castro-Alvarez
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Maria J Matos
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
4
|
In vitro and in silico investigation of inhibitory activities of 3-arylcoumarins and 3-phenylazo-4-hydroxycoumarin on MAO isoenzymes. Struct Chem 2022. [DOI: 10.1007/s11224-022-02092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Matos MJ, Uriarte E, Seoane N, Picos A, Gil‐Longo J, Campos‐Toimil M. Synthesis and Vasorelaxant Activity of Nitrate-Coumarin Derivatives. ChemMedChem 2022; 17:e202200476. [PMID: 36109344 PMCID: PMC9827831 DOI: 10.1002/cmdc.202200476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/15/2022] [Indexed: 01/12/2023]
Abstract
Due to the need for new chemical entities for cardiovascular diseases, we have synthesized a new series of nitrate-coumarins and evaluated their vasorelaxant activity in contraction-relaxation studies using rat aorta rings precontracted with phenylephrine or by depolarization with a high concentration of potassium chloride. Four of the new compounds were able to relax smooth vascular muscle with a similar profile and potency to glyceryl trinitrate (IC50 =12.73 nM) and sodium nitroprusside (IC50 =4.32 nM). Coumarin-7-yl-methyl nitrate (4), the best compound within the series, was able to relax smooth vascular muscle in the low nanomolar range (IC50 =1.92 nM). The mechanisms of action have been explored, being the activation of sGC and the opening of K+ channels involved. Our studies indicate that the new nitrate derivatives are reversible and not deleterious for aortic rings, suggesting that these compounds have a potential interest for the development of new and highly efficient vasodilator drugs.
Collapse
Affiliation(s)
- Maria João Matos
- Departamento de Química Orgánica Facultade de FarmaciaUniversidade Santiago de Compostela15782Santiago de CompostelaSpain
- CIQUP/Departamento de Química e Bioquímica Faculdade de CiênciasUniversidade do Porto4169-007PortoPortugal
| | - Eugenio Uriarte
- Departamento de Química Orgánica Facultade de FarmaciaUniversidade Santiago de Compostela15782Santiago de CompostelaSpain
- Instituto de Ciencias Químicas AplicadasUniversidad Autónoma de Chile7500912SantiagoChile
| | - Nuria Seoane
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS)University of Santiago de CompostelaSantiago de CompostelaSpain
| | - Aitor Picos
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS)University of Santiago de CompostelaSantiago de CompostelaSpain
| | - José Gil‐Longo
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS)University of Santiago de CompostelaSantiago de CompostelaSpain
| | - Manuel Campos‐Toimil
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS)University of Santiago de CompostelaSantiago de CompostelaSpain
| |
Collapse
|
6
|
Erol M, Celik I, Sağlık BN, Karayel A, Mellado M, Mella J. Synthesis, molecular modeling, 3D-QSAR and biological evaluation studies of new benzimidazole derivatives as potential MAO-A and MAO-B inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Alagöz MA, Oh JM, Zenni YN, Özdemir Z, Abdelgawad MA, Naguib IA, Ghoneim MM, Gambacorta N, Nicolotti O, Kim H, Mathew B. Development of a Novel Class of Pyridazinone Derivatives as Selective MAO-B Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123801. [PMID: 35744926 PMCID: PMC9230784 DOI: 10.3390/molecules27123801] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 01/15/2023]
Abstract
Sixteen compounds (TR1-TR16) were synthesized and evaluated for their inhibitory activities against monoamine oxidase A and B (MAOs). Most of the derivatives showed potent and highly selective MAO-B inhibition. Compound TR16 was the most potent inhibitor against MAO-B with an IC50 value of 0.17 μM, followed by TR2 (IC50 = 0.27 μM). TR2 and TR16 selectivity index (SI) values for MAO-B versus MAO-A were 84.96 and higher than 235.29, respectively. Compared to the basic structures, the para-chloro substituent in TR2 and TR16 increased the inhibitory activity of MAO-B. TR2 and TR16 were reversible MAO-B inhibitors that were competitive, with Ki values of 0.230 ± 0.004 and 0.149 ± 0.016 µM, respectively. The PAMPA method indicated that compounds TR2 and TR16 had the tendency to traverse the blood-brain barrier. Docking investigations revealed that lead compounds were beneficial for MAO-B inhibition via association with key as well as selective E84 or Y326 residues, but not for MAO-A inhibition via interaction primarily driven by hydrophobic contacts. In conclusion, TR2 and TR16 are therapeutic prospects for the management of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Mehmet Abdullah Alagöz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, 44280 Malatya, Turkey; (M.A.A.); (Y.N.Z.); (Z.Ö.)
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea;
| | - Yaren Nur Zenni
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, 44280 Malatya, Turkey; (M.A.A.); (Y.N.Z.); (Z.Ö.)
| | - Zeynep Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, 44280 Malatya, Turkey; (M.A.A.); (Y.N.Z.); (Z.Ö.)
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia;
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Nicola Gambacorta
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy; (N.G.); (O.N.)
| | - Orazio Nicolotti
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy; (N.G.); (O.N.)
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea;
- Correspondence: (H.K.); or (B.M.)
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
- Correspondence: (H.K.); or (B.M.)
| |
Collapse
|
8
|
Çevik U, Celik I, Mella J, Mellado M, Özkay Y, Kaplancıklı ZA. Design, Synthesis, and Molecular Modeling Studies of a Novel Benzimidazole as an Aromatase Inhibitor. ACS OMEGA 2022; 7:16152-16163. [PMID: 35571854 PMCID: PMC9097188 DOI: 10.1021/acsomega.2c01497] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/18/2022] [Indexed: 06/01/2023]
Abstract
In this study, a series of novel 1,3,4-oxadiazole-benzimidazole derivatives were designed and synthesized. Their cytotoxic activities against five cancer cell lines, including A549, MCF-7, C6, HepG2, and HeLa, were evaluated by the MTT assay. The compounds 5b,c showed satisfactory potencies with much higher anticancer activity in comparison to the reference drug doxorubicin against the studied cancer cell lines. In vitro, enzymatic inhibition assays of aromatase (ARO) enzymes were performed. Molecular docking, molecular dynamics simulations, and binding free energy analyses were used to better understand the structure-activity connections and mechanism of action of the aromatase inhibitors. Two types of satisfactory 3D-QSAR (CoMFA and CoMSIA) models were generated, to predict the inhibitory activities of the novel inhibitors. Molecular docking studies were also carried out to find their binding sites and types of their interactions with the aromatase enzyme. Additionally, molecular dynamics simulations were performed to explore the most likely binding modes of compounds 5b,c with CYP19A1.
Collapse
Affiliation(s)
- Ulviye
Acar Çevik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Ismail Celik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Jaime Mella
- Institute
of Chemistry and Biochemistry, Faculty of Sciences, University of Valparaíso, Av. Great Britain, 1111 Valparaíso, Chile
| | - Marco Mellado
- Institute
of Chemistry, Faculty of Sciences, Pontificia
Universidad Católica de Valparaíso. Av. Universidad 330, Curauma, 0000 Valparaíso, Chile
| | - Yusuf Özkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| |
Collapse
|
9
|
Mellado M, Reyna-Jeldes M, Weinstein-Oppenheimer C, Covarrubias AA, Aguilar LF, Coddou C, Mella J, Cuellar MA. QSAR-driven synthesis of antiproliferative chalcones against SH-SY5Y cancer cells: Design, biological evaluation, and redesign. Arch Pharm (Weinheim) 2022; 355:e2200042. [PMID: 35435270 DOI: 10.1002/ardp.202200042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/10/2022]
Abstract
Neuroblastoma is one of the most frequent types of cancer found in infants, and traditional chemotherapy has limited efficacy against this pathology. Thus, the development of new compounds with higher activity and selectivity than traditional drugs is a current challenge in medicinal chemistry research. In this study, we report the synthesis of 21 chalcones with antiproliferative activity and selectivity against the neuroblastoma cell line SH-SY5Y. Then, we developed three-dimensional quantitative structure-activity relationship models (comparative molecular field analysis and comparative molecular similarity index analysis) with high-quality statistical values (q2 > 0.7; r2 > 0.8; r2 pred > 0.7), using IC50 and selectivity index (SI) data as dependent variables. With the information derived from these theoretical models, we designed and synthesized 16 new molecules to prove their consistency, finding good antiproliferative activity against SH-SY5Y cells on these derivatives, with three of them showing higher SI than the referential drugs 5-fluorouracil and cisplatin, displaying also a proapoptotic effect comparable to these drugs, as proven by measuring their effects on executor caspases 3/7 activity induction, Bcl-2/Bax messenger RNA levels alteration, and DNA fragmentation promotion.
Collapse
Affiliation(s)
- Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Mauricio Reyna-Jeldes
- Laboratorio de Señalización Purinérgica, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Caroline Weinstein-Oppenheimer
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Valparaíso, Chile
| | - Alejandra A Covarrubias
- Laboratorio de Neurotoxicología Ambiental, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Luis F Aguilar
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Claudio Coddou
- Laboratorio de Señalización Purinérgica, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Jaime Mella
- Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Valparaíso, Chile.,Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Mauricio A Cuellar
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
10
|
Coumarin-Resveratrol-Inspired Hybrids as Monoamine Oxidase B Inhibitors: 3-Phenylcoumarin versus trans-6-Styrylcoumarin. Molecules 2022; 27:molecules27030928. [PMID: 35164192 PMCID: PMC8838197 DOI: 10.3390/molecules27030928] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Monoamine oxidases (MAOs) are attractive targets in drug design. The inhibition of one of the isoforms (A or B) is responsible for modulating the levels of different neurotransmitters in the central nervous system, as well as the production of reactive oxygen species. Molecules that act selectively on one of the MAO isoforms have been studied deeply, and coumarin has been described as a promising scaffold. In the current manuscript we describe a comparative study between 3-phenylcoumarin (endo coumarin-resveratrol-inspired hybrid) and trans-6-styrylcoumarin (exo coumarin-resveratrol-inspired hybrid). Crystallographic structures of both compounds were obtained and analyzed. 3D-QSAR models, in particular CoMFA and CoMSIA, docking simulations and molecular dynamics simulations have been performed to support and better understand the interaction of these molecules with both MAO isoforms. Both molecules proved to inhibit MAO-B, with trans-6-styrylcoumarin being 107 times more active than 3-phenylcoumarin, and 267 times more active than trans-resveratrol.
Collapse
|
11
|
Matos MJ, Uriarte E, Santana L. 3-Phenylcoumarins as a Privileged Scaffold in Medicinal Chemistry: The Landmarks of the Past Decade. Molecules 2021; 26:6755. [PMID: 34771164 PMCID: PMC8587835 DOI: 10.3390/molecules26216755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/27/2022] Open
Abstract
3-Phenylcoumarins are a family of heterocyclic molecules that are widely used in both organic and medicinal chemistry. In this overview, research on this scaffold, since 2010, is included and discussed, focusing on aspects related to its natural origin, synthetic procedures and pharmacological applications. This review paper is based on the most relevant literature related to the role of 3-phenylcoumarins in the design of new drug candidates. The references presented in this review have been collected from multiple electronic databases, including SciFinder, Pubmed and Mendeley.
Collapse
Affiliation(s)
- Maria J Matos
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Lourdes Santana
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
12
|
Abstract
We have structure, a wealth of kinetic data, thousands of chemical ligands and clinical information for the effects of a range of drugs on monoamine oxidase activity in vivo. We have comparative information from various species and mutations on kinetics and effects of inhibition. Nevertheless, there are what seem like simple questions still to be answered. This article presents a brief summary of existing experimental evidence the background and poses questions that remain intriguing for chemists and biochemists researching the chemical enzymology of and drug design for monoamine oxidases (FAD-containing EC 4.1.3.4).
Collapse
|
13
|
Coumarins as Tool Compounds to Aid the Discovery of Selective Function Modulators of Steroid Hormone Binding Proteins. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26175142. [PMID: 34500576 PMCID: PMC8433903 DOI: 10.3390/molecules26175142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022]
Abstract
Steroid hormones play an essential role in a wide variety of actions in the body, such as in metabolism, inflammation, initiating and maintaining sexual differentiation and reproduction, immune functions, and stress response. Androgen, aromatase, and sulfatase pathway enzymes and nuclear receptors are responsible for steroid biosynthesis and sensing steroid hormones. Changes in steroid homeostasis are associated with many endocrine diseases. Thus, the discovery and development of novel drug candidates require a detailed understanding of the small molecule structure–activity relationship with enzymes and receptors participating in steroid hormone synthesis, signaling, and metabolism. Here, we show that simple coumarin derivatives can be employed to build cost-efficiently a set of molecules that derive essential features that enable easy discovery of selective and high-affinity molecules to target proteins. In addition, these compounds are also potent tool molecules to study the metabolism of any small molecule.
Collapse
|
14
|
Zhang C, Lv Y, Bai R, Xie Y. Structural exploration of multifunctional monoamine oxidase B inhibitors as potential drug candidates against Alzheimer's disease. Bioorg Chem 2021; 114:105070. [PMID: 34126574 DOI: 10.1016/j.bioorg.2021.105070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
AD is one of the most typical neurodegenerative disorders that suffer many seniors worldwide. Recently, MAO inhibitors have received increasing attention not only for their roles involved in monoamine neurotransmitters metabolism and oxidative stress but also for their additional neuroprotective and neurorescue effects against AD. The curiosity in MAO inhibitors is reviving, and novel MAO-B inhibitors recently developed with ancillary activities (e.g., Aβ aggregation and AChE inhibition, anti-ROS and chelating activities) have been proposed as multitarget drugs foreshadowing a positive outlook for the treatment of AD. The current review describes the recent development of the design, synthesis, and screening of multifunctional ligands based on MAO-B inhibition for AD therapy. Structure-activity relationships and rational design strategies of the synthetic or natural product derivatives (chalcones, coumarins, chromones, and homoisoflavonoids) are discussed.
Collapse
Affiliation(s)
- Changjun Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, PR China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Renren Bai
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, PR China.
| | - Yuanyuan Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, PR China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| |
Collapse
|
15
|
Novel 2,5-disubstituted-1,3,4-oxadiazole derivatives as MAO-B inhibitors: Synthesis, biological evaluation and molecular modeling studies. Bioorg Chem 2021; 112:104917. [PMID: 33932769 DOI: 10.1016/j.bioorg.2021.104917] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 01/04/2023]
Abstract
Thirty novel 2,5-disubstituted-1,3,4-oxadiazole derivatives bearing urea moiety were designed and synthesized. IR, 1H-NMR, 13C-NMR and mass spectroscopic methods and elemental analysis were used to confirm the structures of the compounds. Their monoamine oxidase inhibitory activity was determined against the MAO-A and MAO-B isoforms. None of the compounds showed the potent MAO-A inhibitory activity, while the MAO-B inhibition was significantly found in the range of 62 to 98%. Among them, the compounds H8, H9 and H12 bearing chloro substituent at the fourth position of phenylurea were found to show potent monoamine oxidase B inhibitory activity with IC50 values 0.039-0.066 µM. To define and evaluate the interaction mechanism between compound H8 and monoamine oxidase B, molecular docking studies have been made.
Collapse
|
16
|
Mellado M, González C, Mella J, Aguilar LF, Viña D, Uriarte E, Cuellar M, Matos MJ. Combined 3D-QSAR and docking analysis for the design and synthesis of chalcones as potent and selective monoamine oxidase B inhibitors. Bioorg Chem 2021; 108:104689. [PMID: 33571810 DOI: 10.1016/j.bioorg.2021.104689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/14/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Monoamine oxidases (MAOs) are important targets in medicinal chemistry, as their inhibition may change the levels of different neurotransmitters in the brain, and also the production of oxidative stress species. New chemical entities able to interact selectively with one of the MAO isoforms are being extensively studied, and chalcones proved to be promising molecules. In the current work, we focused our attention on the understanding of theoretical models that may predict the MAO-B activity and selectivity of new chalcones. 3D-QSAR models, in particular CoMFA and CoMSIA, and docking simulations analysis have been carried out, and their successful implementation was corroborated by studying twenty-three synthetized chalcones (151-173) based on the generated information. All the synthetized molecules proved to inhibit MAO-B, being ten out of them MAO-B potent and selective inhibitors, with IC50 against this isoform in the nanomolar range, being (E)-3-(4-hydroxyphenyl)-1-(2,2-dimethylchroman-6-yl)prop-2-en-1-one (152) the best MAO-B inhibitor (IC50 of 170 nM). Docking simulations on both MAO-A and MAO-B binding pockets, using compound 152, were carried out. Calculated affinity energy for the MAO-A was +2.3 Kcal/mol, and for the MAO-B was -10.3 Kcal/mol, justifying the MAO-B high selectivity of these compounds. Both theoretical and experimental structure-activity relationship studies were performed, and substitution patterns were established to increase MAO-B selectivity and inhibitory efficacy. Therefore, we proved that both 3D-QSAR models and molecular docking approaches enhance the probability of finding new potent and selective MAO-B inhibitors, avoiding time-consuming and costly synthesis and biological evaluations.
Collapse
Affiliation(s)
- Marco Mellado
- Facultad de Ciencias, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile.
| | - César González
- Departamento de Química, Universidad Técnico Federico Santa María, Av. España, 1680 Valparaíso, Chile
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña, 1111 Valparaíso, Chile
| | - Luis F Aguilar
- Facultad de Ciencias, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile
| | - Dolores Viña
- Chronic Diseases Pharmacology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain; Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | - Mauricio Cuellar
- Centro de Investigación Farmacopea Chilena, Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Av. Gran Bretaña, 1093 Valparaíso, Chile
| | - Maria J Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
| |
Collapse
|
17
|
Carneiro A, Matos MJ, Uriarte E, Santana L. Trending Topics on Coumarin and Its Derivatives in 2020. Molecules 2021; 26:501. [PMID: 33477785 PMCID: PMC7832358 DOI: 10.3390/molecules26020501] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Coumarins are naturally occurring molecules with a versatile range of activities. Their structural and physicochemical characteristics make them a privileged scaffold in medicinal chemistry and chemical biology. Many research articles and reviews compile information on this important family of compounds. In this overview, the most recent research papers and reviews from 2020 are organized and analyzed, and a discussion on these data is included. Multiple electronic databases were scanned, including SciFinder, Mendeley, and PubMed, the latter being the main source of information. Particular attention was paid to the potential of coumarins as an important scaffold in drug design, as well as fluorescent probes for decaging of prodrugs, metal detection, and diagnostic purposes. Herein we do an analysis of the trending topics related to coumarin and its derivatives in the broad field of drug discovery.
Collapse
Affiliation(s)
- Aitor Carneiro
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
| | - Maria João Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | - Lourdes Santana
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
| |
Collapse
|