1
|
Alexopoulos S, McGawley M, Mathews R, Papakostopoulou S, Koulas S, Leonidas DD, Zwain T, Hayes JM, Skamnaki V. Evidence for the Quercetin Binding Site of Glycogen Phosphorylase as a Target for Liver-Isoform-Selective Inhibitors against Glioblastoma: Investigation of Flavanols Epigallocatechin Gallate and Epigallocatechin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24070-24081. [PMID: 39433280 PMCID: PMC11528470 DOI: 10.1021/acs.jafc.4c06920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Glycogen phosphorylase (GP) is the rate-determining enzyme in glycogenolysis, and its druggability has been extensively studied over the years for the development of therapeutics against type 2 diabetes (T2D) and, more recently, cancer. However, the conservation of binding sites between the liver and muscle isoforms makes the inhibitor selectivity challenging. Using a combination of kinetic, crystallographic, modeling, and cellular studies, we have probed the binding of dietary flavonoids epigallocatechin gallate (EGCG) and epigallocatechin (EGC) to GP isoforms. The structures of rmGPb-EGCG and rmGPb-EGC complexes were determined by X-ray crystallography, showing binding at the quercetin binding site (QBS) in agreement with kinetic studies that revealed both compounds as noncompetitive inhibitors of GP, with EGCG also causing a significant reduction in cell viability and migration of U87-MG glioblastoma cells. Interestingly, EGCG exhibits different binding modes to GP isoforms, revealing QBS as a promising site for GP targeting, offering new opportunities for the design of liver-selective GP inhibitors.
Collapse
Affiliation(s)
- Serafeim Alexopoulos
- Department
of Biochemistry and Biotechnology, University
of Thessaly, Biopolis, Larisa 41500, Greece
| | - Megan McGawley
- School
of Pharmacy & Biomedical Sciences, University
of Central Lancashire, Preston PR1 2HE, U.K.
| | - Roshini Mathews
- School
of Pharmacy & Biomedical Sciences, University
of Central Lancashire, Preston PR1 2HE, U.K.
| | - Souzana Papakostopoulou
- Department
of Biochemistry and Biotechnology, University
of Thessaly, Biopolis, Larisa 41500, Greece
| | - Symeon Koulas
- Department
of Biochemistry and Biotechnology, University
of Thessaly, Biopolis, Larisa 41500, Greece
| | - Demetres D. Leonidas
- Department
of Biochemistry and Biotechnology, University
of Thessaly, Biopolis, Larisa 41500, Greece
| | - Tamara Zwain
- School
of Pharmacy & Biomedical Sciences, University
of Central Lancashire, Preston PR1 2HE, U.K.
| | - Joseph M. Hayes
- School
of Pharmacy & Biomedical Sciences, University
of Central Lancashire, Preston PR1 2HE, U.K.
| | - Vasiliki Skamnaki
- Department
of Biochemistry and Biotechnology, University
of Thessaly, Biopolis, Larisa 41500, Greece
| |
Collapse
|
2
|
Koulas S, Kyriakis E, Tsagkarakou AS, Leonidas DD. Kinetic and Structural Studies of the Plastidial Solanum tuberosum Phosphorylase. ACS OMEGA 2024; 9:41841-41854. [PMID: 39398113 PMCID: PMC11465516 DOI: 10.1021/acsomega.4c06313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Kinetics and structural studies of the plastidial Solanum tuberosum phosphorylase (stPho1) revealed that the most active form of the enzyme (stPho1ΔL78) is composed by two segments generated by proteolytic degradation of an approximately 65-residue-long peptide (L78) approximately in the middle of the stPho1 primary structure. stPho1ΔL78 is 1.5 times more active than the nonproteolyzed enzyme in solution and shows stronger specificity for glycogen, α-d-glucose, caffeine, and β-cyclodextrin than stPho1. The crystal structure of stPho1ΔL78 has been resolved at 2.2 Å resolution and revealed similarities and differences with the mammalian enzymes. The structural fold is conserved as is the active site, while other binding sites such as the inhibitor, the glycogen storage, the quercetin, and the allosteric are not. The binding of α-d-glucose, caffeine, and β-cyclodextrin to stPho1 has been studied by X-ray crystallography and revealed significant differences from those of the mammalian phosphorylases. As stPho1 is capable of catalyzing both starch synthesis and degradation, our studies suggest that the direction of stPho1 activity is regulated by the proteolytic degradation of the L78 peptide.
Collapse
Affiliation(s)
- Symeon
M. Koulas
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis 41500, Larissa, Greece
| | | | - Anastasia S. Tsagkarakou
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis 41500, Larissa, Greece
| | - Demetres D. Leonidas
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis 41500, Larissa, Greece
| |
Collapse
|
3
|
In Vitro Antidiabetic, Antioxidant, and Prebiotic Activities of the Chemical Compounds Isolated from Guizotia abyssinica. Antioxidants (Basel) 2022; 11:antiox11122482. [PMID: 36552690 PMCID: PMC9774103 DOI: 10.3390/antiox11122482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
India and Ethiopia employ Guizotia abyssinica (niger plant) as a source of edible vegetable oil. Previous studies have documented the niger plant's antioxidant properties and dietary benefits. Here, G. abyssinica extract was obtained and ten known bioactive components (1-10) were isolated. The antioxidant, antidiabetic, and prebiotic properties of whole extract and isolated components of niger and the plant's ability to cooperate symbiotically with probiotic strains were examined. Compound 10, myricetin-3-O-L-rhamnoside, had the highest antioxidant capacity measured in the 2,2-diphenylpicrylhydrazyl (DPPH, 4629.76 ± 6.02 µmol Trolox equivalent/g compound) and ferric-reducing antioxidant power (FRAP, 2667.62 ± 7.5 mol Trolox equivalent/g compound) assays. The lowest α-amylase and glycogen phosphorylase activities and glucose diffusion were obtained with whole G. abyssinica extracts, whereas compounds 8-10 had moderate inhibitory effects. G. abyssinica extract also induced the highest glucose absorption by yeast cells in the presence of 5 mM of glucose. Moreover, Lactobacillus plantarum and L. rhamnosus incubated with β-sitosterol 3-O-D-glucoside (compound 7) showed the highest prebiotic activity score. The levels of L-(+)-lactic acid isomer in the probiotic strains were the highest in presence of the whole extract and decreased progressively in the presence of flavonoid glycosides (compounds 8-10) and β-sitosterol 3-O-D-glucoside. The enzymatic profile of the probiotic strains was unaffected by the niger extract and compounds 7-10. The findings revealed that the biological activities of G. abyssinica extract are mediated by the compounds 1-10, and it may be considered as a promising plant for the treatment of diabetes mellitus.
Collapse
|
4
|
Mingrone G, Castagneto-Gissey L, Bornstein SR. New Horizons: Emerging Antidiabetic Medications. J Clin Endocrinol Metab 2022; 107:e4333-e4340. [PMID: 36106900 DOI: 10.1210/clinem/dgac499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 02/13/2023]
Abstract
Over the past century, since the discovery of insulin, the therapeutic offer for diabetes has grown exponentially, in particular for type 2 diabetes (T2D). However, the drugs in the diabetes pipeline are even more promising because of their impressive antihyperglycemic effects coupled with remarkable weight loss. An ideal medication for T2D should target not only hyperglycemia but also insulin resistance and obesity. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and the new class of GLP1 and gastric inhibitory polypeptide dual RAs counteract 2 of these metabolic defects of T2D, hyperglycemia and obesity, with stunning results that are similar to the effects of metabolic surgery. An important role of antidiabetic medications is to reduce the risk and improve the outcome of cardiovascular diseases, including coronary artery disease and heart failure with reduced or preserved ejection fraction, as well as diabetic nephropathy, as shown by SGLT2 inhibitors. This review summarizes the main drugs currently under development for the treatment of type 1 diabetes and T2D, highlighting their strengths and side effects.
Collapse
Affiliation(s)
- Geltrude Mingrone
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome 00169, Italy
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00169, Italy
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London WC2R 2LS, UK
| | | | - Stefan R Bornstein
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London WC2R 2LS, UK
- Department of Medicine III, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden 01307, Germany
| |
Collapse
|
5
|
Long-term pharmacokinetic and pharmacological evaluations of a novel indole-benzazepinone derivative on obese Type 2 diabetes mellitus. Future Med Chem 2022; 14:1495-1506. [DOI: 10.4155/fmc-2022-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Owing to the chronic nature of Type 2 diabetes mellitus, antidiabetic drugs must have long-lasting efficacy. Compound 1 has a good inhibitory effect on acute hyperglycemia, but its long-term hypoglycemic effect has not been evaluated. Results: Preliminary prediction and in vitro experimental pharmacokinetic results support the use of compound 1 for long-term in vivo experiments. Long-term experiments demonstrated that compound 1 significantly reduces blood glucose, improves the oral glucose tolerance of obese mice and has a positive effect on body weight, free fatty acid, hepatocyte steatosis and inflammatory cell infiltration. Conclusion: These findings lay a good foundation for the further exploration and development of novel glycogen phosphorylase inhibitors.
Collapse
|
6
|
Kim KH. Outliers in SAR and QSAR: 4. effects of allosteric protein-ligand interactions on the classical quantitative structure-activity relationships. Mol Divers 2022; 26:3057-3092. [PMID: 35192113 DOI: 10.1007/s11030-021-10365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/10/2021] [Indexed: 11/26/2022]
Abstract
Effects of allosteric interactions on the classical structure-activity relationship (SAR) and quantitative SAR (QSAR) have been investigated. Apprehending the outliers in SAR and QSAR studies can improve the quality, predictability, and use of QSAR in designing unknown compounds in drug discovery research. We explored allosteric protein-ligand interactions as a possible source of outliers in SAR/QSAR. We used glycogen phosphorylase as an example of a protein that has an allosteric site. Examination of the ligand-bound x-ray crystal structures of glycogen phosphorylase revealed that many inhibitors bound at more than one binding site. The results of QSAR analyses of the inhibitors included a QSAR that recognized an outlier bound at a distinctive allosteric binding site. The case provided an example of constructive use of QSAR identifying outliers with alternative binding modes. Other allosteric QSARs that captured our attention were the inverted parabola/bilinear QSARs. The x-ray crystal structures and the QSAR analyses indicated that the inverted parabola QSARs could be associated with the conformational changes in the allosteric interactions. Our results showed that the normal parabola, as well as the inverted parabola QSARs, can describe the allosteric interactions. Examination of the ligand-bound X-ray crystal structures of glycogen phosphorylase revealed that many inhibitors bound at more than one binding site. The results of QSAR analyses of the inhibitors included a QSAR that recognized an outlier bound at a distinctive allosteric binding site.
Collapse
|
7
|
Rocha S, Aniceto N, Guedes RC, Albuquerque HMT, Silva VLM, Silva AMS, Corvo ML, Fernandes E, Freitas M. An In Silico and an In Vitro Inhibition Analysis of Glycogen Phosphorylase by Flavonoids, Styrylchromones, and Pyrazoles. Nutrients 2022; 14:nu14020306. [PMID: 35057487 PMCID: PMC8781192 DOI: 10.3390/nu14020306] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Glycogen phosphorylase (GP) is a key enzyme in the glycogenolysis pathway. GP inhibitors are currently under investigation as a new liver-targeted approach to managing type 2 diabetes mellitus (DM). The aim of the present study was to evaluate the inhibitory activity of a panel of 52 structurally related chromone derivatives; namely, flavonoids, 2-styrylchromones, 2-styrylchromone-related derivatives [2-(4-arylbuta-1,3-dien-1-yl)chromones], and 4- and 5-styrylpyrazoles against GP, using in silico and in vitro microanalysis screening systems. Several of the tested compounds showed a potent inhibitory effect. The structure–activity relationship study indicated that for 2-styrylchromones and 2-styrylchromone-related derivatives, the hydroxylations at the A and B rings, and in the flavonoid family, as well as the hydroxylation of the A ring, were determinants for the inhibitory activity. To support the in vitro experimental findings, molecular docking studies were performed, revealing clear hydrogen bonding patterns that favored the inhibitory effects of flavonoids, 2-styrylchromones, and 2-styrylchromone-related derivatives. Interestingly, the potency of the most active compounds increased almost four-fold when the concentration of glucose increased, presenting an IC50 < 10 µM. This effect may reduce the risk of hypoglycemia, a commonly reported side effect of antidiabetic agents. This work contributes with important considerations and provides a better understanding of potential scaffolds for the study of novel GP inhibitors.
Collapse
Affiliation(s)
- Sónia Rocha
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (E.F.)
| | - Natália Aniceto
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (N.A.); (R.C.G.); (M.L.C.)
| | - Rita C. Guedes
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (N.A.); (R.C.G.); (M.L.C.)
| | - Hélio M. T. Albuquerque
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.M.T.A.); (V.L.M.S.); (A.M.S.S.)
| | - Vera L. M. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.M.T.A.); (V.L.M.S.); (A.M.S.S.)
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.M.T.A.); (V.L.M.S.); (A.M.S.S.)
| | - Maria Luísa Corvo
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (N.A.); (R.C.G.); (M.L.C.)
| | - Eduarda Fernandes
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (E.F.)
| | - Marisa Freitas
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (E.F.)
- Correspondence: ; Tel.: +351-220-428-664
| |
Collapse
|
8
|
Leonidas DD, Zographos SE, Tsitsanou KE, Skamnaki VT, Stravodimos G, Kyriakis E. Glycogen phosphorylase revisited: extending the resolution of the R- and T-state structures of the free enzyme and in complex with allosteric activators. Acta Crystallogr F Struct Biol Commun 2021; 77:303-311. [PMID: 34473107 PMCID: PMC8411930 DOI: 10.1107/s2053230x21008542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022] Open
Abstract
The crystal structures of free T-state and R-state glycogen phosphorylase (GP) and of R-state GP in complex with the allosteric activators IMP and AMP are reported at improved resolution. GP is a validated pharmaceutical target for the development of antihyperglycaemic agents, and the reported structures may have a significant impact on structure-based drug-design efforts. Comparisons with previously reported structures at lower resolution reveal the detailed conformation of important structural features in the allosteric transition of GP from the T-state to the R-state. The conformation of the N-terminal segment (residues 7-17), the position of which was not located in previous T-state structures, was revealed to form an α-helix (now termed α0). The conformation of this segment (which contains Ser14, phosphorylation of which leads to the activation of GP) is significantly different between the T-state and the R-state, pointing in opposite directions. In the T-state it is packed between helices α4 and α16 (residues 104-115 and 497-508, respectively), while in the R-state it is packed against helix α1 (residues 22'-38') and towards the loop connecting helices α4' and α5' of the neighbouring subunit. The allosteric binding site where AMP and IMP bind is formed by the ordering of a loop (residues 313-326) which is disordered in the free structure, and adopts a conformation dictated mainly by the type of nucleotide that binds at this site.
Collapse
Affiliation(s)
- Demetres D. Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Spyros E. Zographos
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Katerina E. Tsitsanou
- Institute of Chemical Biology, National Hellenic Research Foundation, Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Vassiliki T. Skamnaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - George Stravodimos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Efthimios Kyriakis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
9
|
Chitranshi N, Kumar A, Sheriff S, Gupta V, Godinez A, Saks D, Sarkar S, Shen T, Mirzaei M, Basavarajappa D, Abyadeh M, Singh SK, Dua K, Zhang KYJ, Graham SL, Gupta V. Identification of Novel Cathepsin B Inhibitors with Implications in Alzheimer's Disease: Computational Refining and Biochemical Evaluation. Cells 2021; 10:cells10081946. [PMID: 34440715 PMCID: PMC8391575 DOI: 10.3390/cells10081946] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Amyloid precursor protein (APP), upon proteolytic degradation, forms aggregates of amyloid β (Aβ) and plaques in the brain, which are pathological hallmarks of Alzheimer’s disease (AD). Cathepsin B is a cysteine protease enzyme that catalyzes the proteolytic degradation of APP in the brain. Thus, cathepsin B inhibition is a crucial therapeutic aspect for the discovery of new anti-Alzheimer’s drugs. In this study, we have employed mixed-feature ligand-based virtual screening (LBVS) by integrating pharmacophore mapping, docking, and molecular dynamics to detect small, potent molecules that act as cathepsin B inhibitors. The LBVS model was generated by using hydrophobic (HY), hydrogen bond acceptor (HBA), and hydrogen bond donor (HBD) features, using a dataset of 24 known cathepsin B inhibitors of both natural and synthetic origins. A validated eight-feature pharmacophore hypothesis (Hypo III) was utilized to screen the Maybridge chemical database. The docking score, MM-PBSA, and MM-GBSA methodology was applied to prioritize the lead compounds as virtual screening hits. These compounds share a common amide scaffold, and showed important interactions with Gln23, Cys29, His110, His111, Glu122, His199, and Trp221. The identified inhibitors were further evaluated for cathepsin-B-inhibitory activity. Our study suggests that pyridine, acetamide, and benzohydrazide compounds could be used as a starting point for the development of novel therapeutics.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
- Correspondence: (N.C.); (V.G.); Tel.: +61-(02)-9850-2804 (N.C.)
| | - Ashutosh Kumar
- Center for Biosystems Dynamics Research, Laboratory for Structural Bioinformatics, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Kanagawa, Japan; (A.K.); (K.Y.J.Z.)
| | - Samran Sheriff
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Veer Gupta
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC 3220, Australia;
| | - Angela Godinez
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Danit Saks
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Soumalya Sarkar
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Ting Shen
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Devaraj Basavarajappa
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Morteza Abyadeh
- Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
| | - Sachin K. Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kam Y. J. Zhang
- Center for Biosystems Dynamics Research, Laboratory for Structural Bioinformatics, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Kanagawa, Japan; (A.K.); (K.Y.J.Z.)
| | - Stuart L. Graham
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; (S.S.); (A.G.); (D.S.); (S.S.); (T.S.); (M.M.); (D.B.); (S.L.G.)
- Correspondence: (N.C.); (V.G.); Tel.: +61-(02)-9850-2804 (N.C.)
| |
Collapse
|
10
|
Nanomolar inhibition of human OGA by 2-acetamido-2-deoxy-d-glucono-1,5-lactone semicarbazone derivatives. Eur J Med Chem 2021; 223:113649. [PMID: 34186233 DOI: 10.1016/j.ejmech.2021.113649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/25/2022]
Abstract
O-GlcNAcylation is a dynamic post-translational modification mediated by O-linked β-N-acetylglucosamine transferase (OGT) and O-GlcNAc hydrolase (OGA), that adds or removes a single β-N-acetylglucosamine (GlcNAc) moiety to or from serine/threonine residues of nucleocytosolic and mitochondrial proteins, respectively. The perturbed homeostasis of O-GlcNAc cycling results in several pathological conditions. Human OGA is a promising therapeutic target in diseases where aberrantly low levels of O-GlcNAc are experienced, such as tauopathy in Alzheimer's disease. A new class of potent OGA inhibitors, 2-acetamido-2-deoxy-d-glucono-1,5-lactone (thio)semicarbazones, have been identified. Eight inhibitors were designed and synthesized in five steps starting from d-glucosamine and with 15-55% overall yields. A heterologous OGA expression protocol with strain selection and isolation has been optimized that resulted in stable, active and full length human OGA (hOGA) isomorph. Thermal denaturation kinetics of hOGA revealed environmental factors affecting hOGA stability. From kinetics experiments, the synthesized compounds proved to be efficient competitive inhibitors of hOGA with Ki-s in the range of ∼30-250 nM and moderate selectivity with respect to lysosomal β-hexosaminidases. In silico studies consisting of Prime protein-ligand refinements, QM/MM optimizations and QM/MM-PBSA binding free energy calculations revealed the factors governing the observed potencies, and led to design of the most potent analogue 2-acetamido-2-deoxy-d-glucono-1,5-lactone 4-(2-naphthyl)-semicarbazone 6g (Ki = 36 nM). The protocol employed has applications in future structure based inhibitor design targeting OGA.
Collapse
|
11
|
Discovery and evaluation of novel benzazepinone derivatives as glycogen phosphorylase inhibitors with potent activity. Future Med Chem 2021; 13:897-909. [PMID: 33906369 DOI: 10.4155/fmc-2020-0352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Glycogen phosphorylase (GP) is a key enzyme of glycogen catabolism, so it is significant to discover a new GP inhibitor. A series of benzazepinone derivatives were discovered as GP inhibitors with potent activity. Among these derivatives, compound 5d showed significant potential against rabbit muscle GPa (IC50 = 0.25 ± 0.05 μM) and cellular efficacy. The in vivo study revealed that 5d significantly inhibited increases in fasting blood glucose level in two kinds of hyperglycemic mice models. The possible binding mode of compound 5d was explored based on molecular docking simulations. These results indicated that derivatives with benzazepinone were potential chemical entities against hyperglycemia.
Collapse
|
12
|
Brás NF, Neves RPP, Lopes FAA, Correia MAS, Palma AS, Sousa SF, Ramos MJ. Combined in silico and in vitro studies to identify novel antidiabetic flavonoids targeting glycogen phosphorylase. Bioorg Chem 2020; 108:104552. [PMID: 33357981 DOI: 10.1016/j.bioorg.2020.104552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/13/2020] [Accepted: 12/09/2020] [Indexed: 02/02/2023]
Abstract
Novel pharmacological strategies for the treatment of diabetic patients are now focusing on inhibiting glycogenolysis steps. In this regard, glycogen phosphorylase (GP) is a validated target for the discovery of innovative antihyperglycemic molecules. Natural products, and in particular flavonoids, have been reported as potent inhibitors of GP at the cellular level. Herein, free-energy calculations and microscale thermophoresis approaches were performed to get an in-depth assessment of the binding affinities and elucidate intermolecular interactions of several flavonoids at the inhibitor site of GP. To our knowledge, this is the first study indicating genistein, 8-prenylgenistein, apigenin, 8-prenylapigenin, 8-prenylnaringenin, galangin and valoneic acid dilactone as natural molecules with high inhibitory potency toward GP. We identified: i) the residues Phe285, Tyr613, Glu382 and/or Arg770 as the most relevant for the binding of the best flavonoids to the inhibitor site of GP, and ii) the 5-OH, 7-OH, 8-prenyl substitutions in ring A and the 4'-OH insertion in ring B to favor flavonoid binding at this site. Our results are invaluable to plan further structural modifications through organic synthesis approaches and develop more effective pharmaceuticals for Type 2 Diabetes treatment, and serve as the starting point for the exploration of food products for therapeutic usage, as well as for the development of novel bio-functional food and dietary supplements/herbal medicines.
Collapse
Affiliation(s)
- Natércia F Brás
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Rui P P Neves
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Filipa A A Lopes
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia-Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Márcia A S Correia
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia-Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Angelina S Palma
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia-Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Sérgio F Sousa
- UCIBIO-REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Maria J Ramos
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|