1
|
Lima EN, Lamichhane S, KC P, Ferreira ES, Koul S, Koul HK. Tetrandrine for Targeting Therapy Resistance in Cancer. Curr Top Med Chem 2024; 24:1035-1049. [PMID: 38445699 PMCID: PMC11259026 DOI: 10.2174/0115680266282360240222062032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
During the last five decades, there has been tremendous development in our understanding of cancer biology and the development of new and novel therapeutics to target cancer. However, despite these advances, cancer remains the second leading cause of death across the globe. Most cancer deaths are attributed to the development of resistance to current therapies. There is an urgent and unmet need to address cancer therapy resistance. Tetrandrine, a bis-benzyl iso-quinoline, has shown a promising role as an anti-cancer agent. Recent work from our laboratory and others suggests that tetrandrine and its derivatives could be an excellent adjuvant to the current arsenal of anti-cancer drugs. Herein, we provide an overview of resistance mechanisms to current therapeutics and review the existing literature on the anti-cancer effects of tetrandrine and its potential use for overcoming therapy resistance in cancer.
Collapse
Affiliation(s)
- Ellen Nogueira Lima
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Southeast Louisiana Veterans Health Care System, New Orleans – LA
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Santosh Lamichhane
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Southeast Louisiana Veterans Health Care System, New Orleans – LA
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Pramod KC
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Elisa Silva Ferreira
- Brazilian Nanotechnology National Laboratory (LNNano) Brazilian Center for Research in Energy and Materials (CNPEM) Campinas, SP, Brazil
| | - Sweaty Koul
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Department of Urology, LSUHSC-New Orleans
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Hari K Koul
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Department of Biochemistry & Molecular Biology, LSUHSC-New Orleans
- Department of Urology, LSUHSC-New Orleans
- Southeast Louisiana Veterans Health Care System, New Orleans – LA
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
2
|
Design, Synthesis, and Biological Evaluation of N14-Amino Acid-Substituted Tetrandrine Derivatives as Potential Antitumor Agents against Human Colorectal Cancer. Molecules 2022; 27:molecules27134040. [PMID: 35807286 PMCID: PMC9268013 DOI: 10.3390/molecules27134040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
As a typical dibenzylisoquinoline alkaloid, tetrandrine (TET) is clinically used for the treatment of silicosis, inflammatory pulmonary, and cardiovascular diseases in China. Recent investigations have demonstrated the outstanding anticancer activity of this structure, but its poor aqueous solubility severely restricts its further development. Herein, a series of its 14-N-amino acid-substituted derivatives with improved anticancer effects and aqueous solubility were designed and synthesized. Among them, compound 16 displayed the best antiproliferative activity against human colorectal cancer (HCT-15) cells, with an IC50 value of 0.57 μM. Compared with TET, 16 was markedly improved in terms of aqueous solubility (by 5-fold). Compound 16 significantly suppressed the colony formation, migration, and invasion of HCT-15 cells in a concentration-dependent manner, with it being more potent in this respect than TET. Additionally, compound 16 markedly impaired the morphology and motility of HCT-15 cells and induced the death of colorectal cancer cells in double-staining and flow cytometry assays. Western blot results revealed that 16 could induce the autophagy of HCT-15 cells by significantly decreasing the content of p62/SQSTM1 and enhancing the Beclin-1 level and the ratio of LC3-II to LC3-I. Further study showed that 16 effectively inhibited the proliferation, migration, and tube formation of umbilical vein endothelial cells, manifesting in a potent anti-angiogenesis effect. Overall, these results revealed the potential of 16 as a promising candidate for further preclinical studies.
Collapse
|
3
|
González-Martínez S, Valencia-Ochoa DP, Gálvez-Ruiz JC, Leyva-Peralta MA, Juárez-Sánchez O, Islas-Osuna MA, Calvillo-Páez VI, Höpfl H, Íñiguez-Palomares R, Rocha-Alonzo F, Ochoa Lara K. DNA-Binding Properties of Bis- N-substituted Tetrandrine Derivatives. ACS OMEGA 2022; 7:16380-16390. [PMID: 35601331 PMCID: PMC9118212 DOI: 10.1021/acsomega.2c00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
A series of bis-N-substituted tetrandrine derivatives carrying different aromatic substituents attached to both nitrogen atoms of the natural alkaloid were studied with double-stranded model DNAs (dsDNAs) to examine the binding properties and mechanism. Variable-temperature molecular recognition studies using UV-vis and fluorescence techniques revealed the thermodynamic parameters, ΔH, ΔS, and ΔG, showing that the tetrandrine derivatives exhibit high affinity toward dsDNA (K ≈ 105-107 M-1), particularly the bis(methyl)anthraquinone (BAqT) and bis(ethyl)indole compounds (BInT). Viscometry experiments, ethidium displacement assays, and molecular modeling studies enabled elucidation of the possible binding mode, indicating that the compounds exhibit a synergic interaction mode involving intercalation of one of the N-aryl substituents and interaction of the molecular skeleton in the major groove of the dsDNA. Cytotoxicity tests of the derivatives with tumor and nontumor cell lines demonstrated low cytotoxicity of these compounds, with the exception of the bis(methyl)pyrene (BPyrT) derivative, which is significantly more cytotoxic than the remaining derivatives, with IC50 values against the LS-180, A-549, and ARPE-19 cell lines that are similar to natural tetrandrine. Finally, complementary electrochemical characterization studies unveiled good electrochemical stability of the compounds.
Collapse
Affiliation(s)
- Sandra
Mónica González-Martínez
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro,
CP 83000 Hermosillo, Sonora, México
| | - Drochss Pettry Valencia-Ochoa
- Departamento
de Ciencias Naturales y Matemáticas, Facultad de Ingeniería
y Ciencias, Pontificia Universidad Javeriana, Calle 18 No. 118-250, CP 760031 Cali, Colombia
| | - Juan Carlos Gálvez-Ruiz
- Departamento
de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000 Hermosillo, Sonora, México
| | - Mario Alberto Leyva-Peralta
- Departamento
de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Ave. Universidad e Irigoyen s/n, CP 83621 H. Caborca, Sonora, México
| | - Octavio Juárez-Sánchez
- Departamento
de Investigación en Física, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000 Hermosillo, Sonora, México
| | - María A. Islas-Osuna
- Laboratorio
de Biología Biomolecular, Centro
de Investigación en Alimentación y Desarrollo, A. C., Gustavo Enrique Astiazaran Rosas,
No. 46., CP 83304 Hermosillo, Sonora, México
| | - Viviana Isabel Calvillo-Páez
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro,
CP 83000 Hermosillo, Sonora, México
| | - Herbert Höpfl
- Centro
de Investigaciones Químicas, Instituto de Investigación
en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos, México
| | - Ramón Íñiguez-Palomares
- Departamento
de Física, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000 Hermosillo, Sonora, México
| | - Fernando Rocha-Alonzo
- Departamento
de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000 Hermosillo, Sonora, México
| | - Karen Ochoa Lara
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro,
CP 83000 Hermosillo, Sonora, México
| |
Collapse
|
4
|
Zhang Q, Wu Y, Yu Y, Niu Y, Fang Q, Chen X, Qi J, Zhang C, Wu G, Su K, Chai R. Tetrandrine Prevents Neomycin-Induced Ototoxicity by Promoting Steroid Biosynthesis. Front Bioeng Biotechnol 2022; 10:876237. [PMID: 35519614 PMCID: PMC9065337 DOI: 10.3389/fbioe.2022.876237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Aminoglycoside antibiotics are widely used for the treatment of serious acute infections, life-threatening sepsis, and tuberculosis, but all aminoglycosides cause side effects, especially irreversible ototoxicity. The mechanisms underlying the ototoxicity of aminoglycosides need further investigation, and there are no effective drugs in the clinic. Here we showed that tetrandrine (TET), a bioactive bisbenzylisoquinoline alkaloid derived from Stephania tetrandra, ameliorated neomycin-induced cochlear hair cell injury. In both in vitro and in vivo experiments we found that TET administration significantly improved auditory function and reduced hair cell damage after neomycin exposure. In addition, we observed that TET could significantly decrease oxidative stress and apoptosis in hair cells after neomycin exposure. Finally, RNA-seq analysis suggested that TET protected against neomycin-induced ototoxicity mainly by promoting steroid biosynthesis. Collectively, our results provide pharmacological evidence showing that TET may be a promising agent in preventing aminoglycosides-induced ototoxicity.
Collapse
Affiliation(s)
- Qilei Zhang
- The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Yunhao Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- *Correspondence: Yunhao Wu, ; Geping Wu, ; Kaiming Su, ; Renjie Chai,
| | - Yan Yu
- The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Yuguang Niu
- Department of Ambulatory Medicine, the First Medical Center of PLA General Hospital, Beijing, China
| | - Qiaojun Fang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xin Chen
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Jieyu Qi
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Chen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Geping Wu
- The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
- *Correspondence: Yunhao Wu, ; Geping Wu, ; Kaiming Su, ; Renjie Chai,
| | - Kaiming Su
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Yunhao Wu, ; Geping Wu, ; Kaiming Su, ; Renjie Chai,
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- *Correspondence: Yunhao Wu, ; Geping Wu, ; Kaiming Su, ; Renjie Chai,
| |
Collapse
|
5
|
Zhao H, Kong L, Shen J, Ma Y, Wu Z, Li H, He Y. Tetrandrine inhibits the occurrence and development of frozen shoulder by inhibiting inflammation, angiogenesis, and fibrosis. Biomed Pharmacother 2021; 140:111700. [PMID: 34044279 DOI: 10.1016/j.biopha.2021.111700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Frozen shoulders (FS) is a major clinical concern, where chronic synovial inflammation, abnormal angiogenesis, and fibrosis represent the critical pathologies in the glenohumeral capsule. However, no pharmacotherapy has been introduced to treat this pathology. Tetrandrine (TET) has been proposed as a treatment for many diseases due to its strong anti-inflammatory, anti-angiogenic, and anti-fibrotic effects. PURPOSE To study the anti-inflammatory, anti-angiogenic, and anti-fibrotic effects of TET on FS, and identify whether TET can prevent the development of FS in rats. STUDY DESIGN A controlled laboratory study. METHODS Forty-eight male Sprague-Dawley (SD) rats were randomly divided into control, TET, and FS groups. The TET group was intraperitoneally injected with TET every 2 days. TET and saline treatment were started on the day of FS surgery. After 8 weeks, the animals were sacrificed, and samples were collected for X-ray examination, glenohumeral range of motion (ROM) evaluation, histology and immunohistochemistry analysis, transmission electron microscopy (TEM) observation, and profibrogenic factors as well as proinflammatory cytokines measurements. RESULTS No significant difference in shoulder ROM was observed between the TET and control groups, but a significant difference was noted between these groups and the FS group (P < 0.01). Immunohistochemical staining showed no abnormal angiogenesis or fibrosis in the TET group or the control group. However, significant angiogenesis, collagen remodeling, and fibrosis were observed in the FS group, and the expression and proportion of type I and type III collagen in the FS group were significantly higher than those in the TET group or the control group (P < 0.01). TEM observation showed that TET protected the ultrastructure of collagen fibrous reticular arrangement of the articular capsule and prevented the formation of scar-like fibrotic structures, which are unique to FS. The significantly increased expression of Smad7 and the suppressed expression of Smad 2 in the TET group compared with that of the FS group indicated that TET also significantly inhibited the TGF-β1 intracellular signal pathway. The expression of profibrogenic factors and proinflammatory cytokines in the TET group and the control group was significantly lower than that in the TET group (P < 0.01). CONCLUSION The results demonstrated that TET protected the normal reticular structure of the capsule during the freezing period and prevented the development of FS by inhibiting inflammation, angiogenesis, and fibrosis in a rat FS model. CLINICAL RELEVANCE TET may be a safe and effective clinical medication for preventing and treating FS.
Collapse
Affiliation(s)
- Huakun Zhao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Lingzhi Kong
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Ji Shen
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yanhong Ma
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Zhi Wu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Haiyan Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Chemical and Environmental Engineering, School of Engineering, RMIT University, 124 La Trobe St, Melbourne, VIC 3000, Australia.
| | - Yaohua He
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| |
Collapse
|
6
|
Lin FJ, Li H, Wu DT, Zhuang QG, Li HB, Geng F, Gan RY. Recent development in zebrafish model for bioactivity and safety evaluation of natural products. Crit Rev Food Sci Nutr 2021; 62:8646-8674. [PMID: 34058920 DOI: 10.1080/10408398.2021.1931023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zebrafish is a species of freshwater fish, popular in aquariums and laboratories. Several advantageous features have facilitated zebrafish to be extensively utilized as a valuable vertebrate model in the lab. It has been well-recognized that natural products possess multiple health benefits for humans. With the increasing demand for natural products in the development of functional foods, nutraceuticals, and natural cosmetics, the zebrafish has emerged as an unprecedented tool for rapidly and economically screening and identifying safe and effective substances from natural products. This review first summarized the key factors for the management of zebrafish in the laboratory, followed by highlighting the current progress on the establishment and applications of zebrafish models in the bioactivity evaluation of natural products. In addition, the zebrafish models used for assessing the potential toxicity or health risks of natural products were involved as well. Overall, this review indicates that zebrafish are promising animal models for the bioactivity and safety evaluation of natural products, and zebrafish models can accelerate the discovery of novel natural products with potential health functions.
Collapse
Affiliation(s)
- Fang-Jun Lin
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Hang Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Qi-Guo Zhuang
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Ren-You Gan
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
7
|
Sun R, Yang L, Hu Y, Wang Y, Zhang Q, Zhang Y, Ji Z, Zhao D. ANGPTL1 is a potential biomarker for differentiated thyroid cancer diagnosis and recurrence. Oncol Lett 2020; 20:240. [PMID: 32973954 PMCID: PMC7509504 DOI: 10.3892/ol.2020.12103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Differentiated thyroid cancer (DTC) is a common type of cancer among women with an increasing worldwide incidence rate. However, there are no specific and sensitive molecular biomarkers for DTC diagnosis or prognosis. Angiopoietin-like protein 1 (ANGPTL1) may be a novel tumor suppressor in lung, breast, colorectal and hepatocellular carcinoma. However, little is known about the influence of ANGPTL1 on the malignant properties of thyroid cancer cells or DTC recurrence in patients. Thus, the present study aimed to investigate the effects of ANGPTL1 on thyroid cancer malignancy or recurrence. The present study examined the mRNA levels of ANGPTL1 in thyroid cancer and paracancerous tissues using RNA sequencing data from The Cancer Genome Atlas. The present study also determined the effects of ANGPTL1 on thyroid cancer cell proliferation using the Cell Counting Kit-8 assay. Associations were identified among ANGPTL1 expression levels and thyroid cancer proliferation, migration and metastasis using The Cancer Genome Atlas data set and by Gene Set Enrichment Analysis. The expression of ANGPTL1 in patients with DTC and without recurrence was compared in order to assess its potential as a prognostic biomarker for DTC. In addition, ANGPTL1 concentrations in the serum of patients with DTC and individuals with benign thyroid nodules were compared to evaluate the sensitivity and specificity of ANGPTL1 as a predictive biomarker for DTC. The results of the present study demonstrated that ANGPTL1 expression levels were lower in thyroid cancer compared with those in adjacent normal thyroid tissues. ANGPTL1 expression was observed to decrease with thyroid cancer progression. In addition, ANGPTL1 was demonstrated to inhibit thyroid cancer cell proliferation, migration and invasion and ANGPTL1 expression levels were reduced in patients with DTC with recurrence compared with those in patients with non-recurrent DTC. Additionally, serum concentrations of ANGPTL1 in patients with DTC were decreased compared with those in individuals with benign thyroid nodules. In conclusion, ANGPTL1 may be a novel predictive biomarker for DTC diagnosis and recurrence in patients with DTC.
Collapse
Affiliation(s)
- Rongxin Sun
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Longyan Yang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Yangping Hu
- Department of Pathology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Yan Wang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Zhili Ji
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Dong Zhao
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| |
Collapse
|