1
|
Omar MH, Emam SH, Mikhail DS, Elmeligie S. Combretastatin A-4 based compounds as potential anticancer agents: A review. Bioorg Chem 2024; 153:107930. [PMID: 39504638 DOI: 10.1016/j.bioorg.2024.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
The current review discusses the importance of combretastatin A-4 (CA-4) as a lead compound of microtubule targeting agents. CA-4 holds a unique place among naturally occurring compounds having cytotoxic activity. In this review an overall picture of design strategies, structure-activity relationship, synthesis, cytotoxic activity, and binding interactions of promising CA-4 analogues, are discussed and arranged chronologically from 2016 to early 2023. Also, this review emphasizes their biological activity as anticancer agents, within an overview of clinical application limitation and suggested strategies to overcome. Dual targeting tubulin inhibitors showed highpotentialto surpass medication resistance and provide synergistic efficacy. Linking platinum (IV), amino acids, and HDAC targeting moieties to active tubulin inhibitorsproduced potent active compounds. Analogues of CA-4 bridged with azetidin-2-one, pyrazole, sulfide, or carrying selenium atom exhibited cytotoxic action against a variety of malignant cell lines through different pathways.
Collapse
Affiliation(s)
- Mai H Omar
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Soha H Emam
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Demiana S Mikhail
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Salwa Elmeligie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
2
|
Napiórkowska M, Otto-Ślusarczyk D, Kurpios-Piec D, Stukan I, Gryzik M, Wojda U. BM7, a derivative of benzofuran, effectively fights cancer by promoting cancer cell apoptosis and impacting IL-6 levels. Eur J Pharmacol 2024; 978:176751. [PMID: 38897442 DOI: 10.1016/j.ejphar.2024.176751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
The BM7 compound, a bromo derivative of methyl 6-acetyl-5-hydroxy-2-methyl-1-benzofuran-3-carboxylate, was previously identified as cytotoxic to human leukaemia cells (K562 and HL60) and human cervical cancer (HeLa), while showing no toxicity to non-cancerous primary endothelial cells (HUVEC). In this study, we present the first demonstration of BM7's anticancer efficacy in vivo using a mouse chronic myeloid leukaemia xenograft model. Administered intraperitoneally in a mixture of 10% Solutol HS 15/10% ethanol, BM7 exhibited no visible toxicity and significantly reduced tumor weight, comparable to standard drugs imatinib and hydroxyurea. Further supporting its anticancer potential, a multi-model in vitro study involving seven human cancer cell lines revealed the most promising responses in colon cancer (SW480, SW620, HCT116), liver cancer (HEPG2), and breast adenocarcinoma (MDA-MB-231) cells. BM7 demonstrated multifaceted anticancer mechanisms, inducing apoptosis while elevating reactive oxygen species (ROS) levels and suppressing interleukin-6 (IL-6) release in these cell lines. These findings position BM7 as a candidate of significant interest for cancer therapy. Its ability to not only induce apoptosis but also modulate cellular processes such as ROS levels and immune responses, specifically IL-6 suppression, makes BM7 a versatile and promising agent for further exploration in the realm of cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Iga Stukan
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland; Department of General Pathology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 1 Rybacka Street, 70-204, Szczecin, Poland
| | - Marek Gryzik
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| |
Collapse
|
3
|
Napiórkowska M, Kumaravel P, Amboo Mahentheran M, Kiernozek-Kalińska E, Grosicka-Maciąg E. New Derivatives of 1-(3-Methyl-1-Benzofuran-2-yl)Ethan-1-one: Synthesis and Preliminary Studies of Biological Activity. Int J Mol Sci 2024; 25:1999. [PMID: 38396676 PMCID: PMC10888192 DOI: 10.3390/ijms25041999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
A set of nine derivatives, including five brominated compounds, was synthesized and the structures of these novel compounds were confirmed using 1H and 13C NMR as well as ESI MS spectra. These compounds were tested on four different cancer cell lines, chronic myelogenous leukemia (K562), prostate cancer (PC3), colon cancer (SW620), human kidney cancer (Caki 1), and on healthy human keratocytes (HaCaT). MTT results reveal that two newly developed derivatives (6 and 8) exhibit selective action towards K562 cells and no toxic effect in HaCat cells. The biological activity of these two most promising compounds was evaluated by trypan blue assay, reactive oxygen species generation, and IL-6 secretion. To investigate the proapoptotic activity of selected compounds, the two following types of tests were performed: Annexin V Apoptosis Detection Kit I and Caspase-Glo 3/7 assay. The studies of the mechanism showed that both compounds have pro-oxidative effects and increase reactive oxygen species in cancer cells, especially at 12 h incubation. Through the Caspase-Glo 3/7 assay, the proapoptotic properties of both compounds were confirmed. The Annexin V-FITC test revealed that compounds 6 and 8 induce apoptosis in K562 cells. Both compounds inhibit the release of proinflammatory interleukin 6 (IL-6) in K562 cells. Additionally, all compounds were screened for their antibacterial activities using standard and clinical strains. Within the studied group, compound 7 showed moderate activity towards Gram-positive strains in antimicrobial studies, with MIC values ranging from 16 to 64 µg/mL.
Collapse
Affiliation(s)
- Mariola Napiórkowska
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (P.K.); (M.A.M.)
| | - Pratheeba Kumaravel
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (P.K.); (M.A.M.)
| | - Mithulya Amboo Mahentheran
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (P.K.); (M.A.M.)
| | - Ewelina Kiernozek-Kalińska
- Department of Immunology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland
| | - Emilia Grosicka-Maciąg
- Department of Biochemistry and Laboratory Diagnostic, Collegium Medicum Cardinal Stefan Wyszyński University, Kazimierza Wóycickiego 1 Str., 01-938 Warsaw, Poland;
| |
Collapse
|
4
|
Song J, Wang SY, Wang X, Jia MQ, Tian XY, Fu XJ, Jin CY, Zhang SY. Discovery of a novel Coumarin-Dihydroquinoxalone derivative MY-673 as a tubulin polymerization inhibitor capable of inhibiting the ERK pathway with potent anti-gastric cancer activities. Bioorg Chem 2023; 137:106580. [PMID: 37149948 DOI: 10.1016/j.bioorg.2023.106580] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
As a class of microtubule targeting agents, colchicine binding site inhibitors (CBSIs) are considered as promising drug candidates for cancer therapy. However, due to adverse reactions, there are currently no CBSIs approved by FDA for cancer treatment. Therefore, extensive efforts are still encouraged to find novel CBSIs with different chemical structures and better anticancer efficacies. In this work, we designed and synthesized a new coumarin-dihydroquinoxalone derivative, MY-673, and evaluated its anticancer potency in vitro and in vivo. We confirmed that MY-673 was a potent CBSI that it not only inhibited tubulin polymerization, but also exhibited significant inhibitory potency on the growth of 13 cancer cells with IC50 values from 11.7 nM to 395.9 nM. Based on the results of kinase panel screening, MY-673 could inhibit ERK (extracellular regulated protein kinases) pathways-related kinases. We further confirmed that MY-673 could inhibit ERK signaling pathway in MGC-803 and HGC-27 cells, and then affected the expression level of SMAD4 protein in TGF-β (transforming growth factor β) /SMAD (small mother against decapentaplegic) signaling pathway using the western blotting assay. In addition, compound MY-673 could effectively inhibit cell proliferation, migration and induce cell apoptosis. We also further confirmed the in vivo efficacy of MY-673 in inhibiting tumor growth using the MGC-803 xenograft tumor model. At 20 mg/kg, the TGI rate was 85.9%, and it did not cause obvious toxicity to the main organs of mice. Together, the results we report here indicated that MY-673 was a promising CBSI for cancer treatment, which was capable of inhibiting the ERK pathway with potent antiproliferative activities in vitro and in vivo.
Collapse
Affiliation(s)
- Jian Song
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shu-Yu Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiao Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mei-Qi Jia
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xin-Yi Tian
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiang-Jing Fu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Cheng-Yun Jin
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Sai-Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
5
|
Abo Elmaaty A, Al-Karmalawy AA, Nafie MS, Shamaa MM, Zaki I, Alnajjar R, Zakaria MY. Experimental Design of D-α-tocopherol polyethylene glycol 1000 succinate Stabilized Bile Salt Based Nano-vesicles for Improved Cytotoxicity and Bioavailability of Colchicine Binding Site Inhibitor Candidates: In Vitro, In silico, and Pharmacokinetic Studies. Int J Pharm 2023; 640:122980. [PMID: 37116601 DOI: 10.1016/j.ijpharm.2023.122980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023]
Abstract
Nowadays, conventional anticancer therapy suffers many pitfalls, including drastic side effects and limited therapeutic efficacy resulting from diminished oral bioavailability. So, in an attempt to enhance their poor solubility and oral bioavailability along with the cytotoxic activity, the developed lead compounds (C1 and C2) were loaded in D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) modified vesicles adopting thin film hydration technique. The formulations of the aforementioned candidates (F1 and F2, respectively) were elected as the optimum formula with desirability values of 0.701 and 0.618, respectively. Furthermore, an outstanding enhancement in the drug's cytotoxic activity against different cancer cell lines (MCF-7, HepG-2, MDA-MB-321, A375, and MGC-803) after being included in the nano-TPGS-modified optimum formula was noticed relative to the unformulated compounds. The formula F1 showed the best cytotoxic activities against HepG-2 with an IC50 = 3 µM. Furthermore, regarding MCF-7, F1 was shown to be the most potent and protective among all the tested formulations with an IC50 = 6 µM. Besides, F1 exerted the best caspase 3/7 activity stimulation (around a 5-folds increase) compared to control in the MCF-7 cell line. Notably, it was disclosedthat both C1 and C2 induced cell cycle arrest at the resting S growth phase. Moreover, C1 and C2 decreased tubulin concentrations by approximately 2-folds and 6-folds, respectively. Meanwhile, the conducted molecular docking studies ensure the eligible binding affinities of the assessed compounds. Besides, MD simulations were performed for 1000 ns to confirm the docking results and study the exact behavior of the target candidates (C1 and C2) toward the CBS.
Collapse
Affiliation(s)
- Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| | - Mohamed S Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Marium M Shamaa
- Biochemistry Department, Clinical and biological sciences division, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt.
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya; PharmD, Faculty of Pharmacy, Libyan International Medical University, Benghazi, Libya; Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Salman International University, Ras Sudr, 46612 South Sinai, Egypt.
| |
Collapse
|
6
|
Abbas AA, Dawood KM. Anticancer therapeutic potential of benzofuran scaffolds. RSC Adv 2023; 13:11096-11120. [PMID: 37056966 PMCID: PMC10086673 DOI: 10.1039/d3ra01383a] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023] Open
Abstract
Benzofuran moiety is the main component of many biologically active natural and synthetic heterocycles. These heterocycles have unique therapeutic potentials and are involved in various clinical drugs. The reported results confirmed the extraordinary inhibitory potency of such benzofurans against a panel of human cancer cell lines compared with a wide array of reference anticancer drugs. Several publications about the anticancer potencies of benzofuran-based heterocycles were encountered. The recent developments of anticancer activities of both natural and synthetic benzofuran scaffolds during 2019-2022 are thoroughly covered. Many of the described benzofurans are promising candidates for development as anticancer agents based on their outstanding inhibitory potency against a panel of human cancer cells compared with reference anticancer drugs. These findings encourage medicinal chemists to explore new areas to improve human health and reduce suffering.
Collapse
Affiliation(s)
- Ashraf A Abbas
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +20-2-35727556 +20-2-35676602
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +20-2-35727556 +20-2-35676602
| |
Collapse
|
7
|
Yuan XY, Song CH, Liu XJ, Wang X, Jia MQ, Wang W, Liu WB, Fu XJ, Jin CY, Song J, Zhang SY. Discovery of novel N-benzylarylamide-dithiocarbamate based derivatives as dual inhibitors of tubulin polymerization and LSD1 that inhibit gastric cancers. Eur J Med Chem 2023; 252:115281. [PMID: 36940611 DOI: 10.1016/j.ejmech.2023.115281] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
In this work, N-benzylarylamide-dithiocarbamate based derivatives were designed, synthesized, and their biological activities as anticancer agents were explored. Some of the 33 target compounds displayed significant antiproliferative activities with IC50 values at the double-digit nanomolar level. The representative compound I-25 (also named MY-943) not only showed the most effective inhibitory effects on three selected cancer cells MGC-803 (IC50 = 0.017 μM), HCT-116 (IC50 = 0.044 μM) and KYSE450 (IC50 = 0.030 μM), but also exhibited low nanomolar IC50 values from 0.019 to 0.253 μM against the other 11 cancer cells. Compound I-25 (MY-943) effectively inhibited tubulin polymerization and suppressed LSD1 at the enzymatic levels. Compound I-25 (MY-943) could act on the colchicine binding site of β-tubulin, thus disrupting the construction of cell microtubule network and affecting the mitosis. In addition, compound I-25 (MY-943) could dose-dependently induce the accumulation of H3K4me1/2 (MGC-803 and SGC-7091 cells) and H3K9me2 (SGC-7091 cells). Compound I-25 (MY-943) could induce G2/M phase arrest and cell apoptosis, and suppress migration in MGC-803 and SGC-7901 cells. In addition, compound I-25 (MY-943) significantly modulated the expression of apoptosis- and cycle-related proteins. Furthermore, the binding modes of compound I-25 (MY-943) with tubulin and LSD1 were explored by molecular docking. The results of in vivo anti-gastric cancer assays using in situ tumor models showed that compound I-25 (MY-943) effectively reduced the weight and volume of gastric cancer in vivo without obvious toxicity. All these findings suggested that the N-benzylarylamide-dithiocarbamate based derivative I-25 (MY-943) was an effective dual inhibitor of tubulin polymerization and LSD1 that inhibited gastric cancers.
Collapse
Affiliation(s)
- Xin-Ying Yuan
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Chun-Hong Song
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Xiu-Juan Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Mei-Qi Jia
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wang Wang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, 471934, China
| | - Wen-Bo Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Xiang-Jing Fu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Cheng-Yun Jin
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China.
| | - Jian Song
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
8
|
Chen L, Zhang B, Li YH, Huo XS, You WW, Zhao PL. Concise synthesis and preliminary biological evaluation of new triazolylthioacetone derivatives bearing pyridine, pyrazine, and 3,4,5-trimethoxybenzyl fragment. Bioorg Med Chem Lett 2022; 66:128721. [PMID: 35398303 DOI: 10.1016/j.bmcl.2022.128721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 11/02/2022]
Abstract
Based on our previous work, a series of novel triazolylthioacetones incorporating pyridine, pyrazine, and 3,4,5-trimethoxybenzyl fragment were synthesized, and evaluated for antiproliferative activities and interactions with tubulin. Some analogues exhibited moderate to excellent potency, with the most promising compound IIc possessing IC50 values of 0.62, 1.46, and 3.65 μM against HT-29, HCT116, and HepG2 tumor cells, respectively, which were comparable with the positive control CA-4. Mechanistical studies revealed that IIc concentration-dependently caused cell cycle arrest at the G2/M phase in HCT116 tumor cells, and displayed a significant inhibition of tubulin polymerization with an IC50 value of 12.7 μM. Moreover, molecular docking analysis suggested that IIc could occupy the colchicine-binding site in a similar way with typical tubulinpolymerizationinhibitors. These results highlighted the 4-amino-triazolylthioacetone scaffold as potential tubulin polymerization inhibitors for development of highly efficient anticancer agents.
Collapse
Affiliation(s)
- Lin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Bei Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Yan-Hong Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xian-Sen Huo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
9
|
Design, synthesis, biological assessment, and in-Silico studies of 1,2,4-triazolo[1,5-a]pyrimidine derivatives as tubulin polymerization inhibitors. Bioorg Chem 2022; 121:105687. [DOI: 10.1016/j.bioorg.2022.105687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/20/2022]
|
10
|
Sadovnikov KS, Vasilenko DA, Gracheva YA, Zefirov NA, Radchenko EV, Palyulin VA, Grishin YK, Vasilichin VA, Shtil AA, Shevtsov PN, Shevtsova EF, Kuznetsova TS, Kuznetsov SA, Bunev AS, Zefirova ON, Milaeva ER, Averina EB. Novel substituted 5-methyl-4-acylaminoisoxazoles as antimitotic agents: Evaluation of selectivity to LNCaP cancer cells. Arch Pharm (Weinheim) 2022; 355:e2100425. [PMID: 35103336 DOI: 10.1002/ardp.202100425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 11/07/2022]
Abstract
A series of novel antimitotic agents was designed using the replacement of heterocyclic cores in two tubulin-targeting lead molecules with the acylated 4-aminoisoxazole moiety. Target compounds were synthesized via heterocyclization of β-aryl-substituted vinylketones by tert-butyl nitrite in the presence of water as a key step. 4-Methyl-N-[5-methyl-3-(3,4,5-trimethoxyphenyl)isoxazol-4-yl]benzamide (1aa) was found to stimulate partial depolymerization of microtubules of human lung carcinoma A549 cells at a high concentration of 100 µM and to totally inhibit cell growth (IC50 = 0.99 µM) and cell viability (IC50 = 0.271 µM) in the nanomolar to submicromolar concentration range. These data provide evidence of the multitarget profile of the cytotoxic action of compound 1aa. The SAR study demonstrated that the 3,4,5-trimethoxyphenyl residue is the key structural parameter determining the efficiency both towards tubulin and other molecular targets. The cytotoxicity of 3-methyl-N-[5-methyl-3-(3,4,5-trimethoxyphenyl)isoxazol-4-yl]benzamide (1ab) to the androgen-sensitive human prostate adenocarcinoma cancer cell line LNCaP (IC50 = 0.301 µM) was approximately one order of magnitude higher than that to the conditionally normal cells lines WI-26 VA4 (IC50 = 2.26 µM) and human umbilical vein endothelial cells (IC50 = 5.58 µM) and significantly higher than that to primary fibroblasts (IC50 > 75 µM).
Collapse
Affiliation(s)
- Kirill S Sadovnikov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Dmitry A Vasilenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Yulia A Gracheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Nikolay A Zefirov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Eugene V Radchenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vladimir A Palyulin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Yuri K Grishin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - Alexander A Shtil
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation.,Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Pavel N Shevtsov
- Institute of Physiologically Active Compounds, Chernogolovka MR, Russian Federation
| | - Elena F Shevtsova
- Institute of Physiologically Active Compounds, Chernogolovka MR, Russian Federation
| | - Tamara S Kuznetsova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergei A Kuznetsov
- Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Rostock, Germany
| | - Alexander S Bunev
- Medicinal Chemistry Center, Togliatti State University, Togliatti, Russian Federation
| | - Olga N Zefirova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Elena R Milaeva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Elena B Averina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
11
|
E. Sarhan A, A. Sediek A, M. Khalifa N, E. Hasan E. Novel Pyrazolines and Benzothiazepines as Tubulin Polymerization Inhibitors: Synthesis, Biological Evaluation, and Molecular Docking. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Sun YX, Song J, Kong LJ, Sha BB, Tian XY, Liu XJ, Hu T, Chen P, Zhang SY. Design, synthesis and evaluation of novel bis-substituted aromatic amide dithiocarbamate derivatives as colchicine site tubulin polymerization inhibitors with potent anticancer activities. Eur J Med Chem 2021; 229:114069. [PMID: 34971875 DOI: 10.1016/j.ejmech.2021.114069] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022]
Abstract
As the continuation of our work on the development of tubulin inhibitors with potential anticancer activities, novel bis-substituted aromatic amide dithiocarbamate derivatives were designed by contacting bis-substituted aryl scaffolds (potential anti-tubulin fragments) with N-containing heterocycles (potential anti-tubulin fragments) in one hybrid using the anticancer dithioformate unit as the linker. The antiproliferative activity against three digestive tract tumor cells was evaluated and preliminary structure activity relationships were summarized. Among these compounds, compound 20q exhibited most potent antiproliferative activity against MGC-803, HCT-116, Kyse30 and Kyse450 cells with IC50 values of 0.084, 0.227, 0.069 and 0.078 μM, respectively. In further studies, compound 20q was identified as a novel tubulin inhibitor targeting the colchicine binding site. Compound 20q could inhibit the microtubule assembly and disrupt cytoskeleton in Kyse30 and Kyse450 cells. The results of molecular docking suggested that compound 20q could tightly bind into the colchicine binding site of tubulin by hydrogen bonds and hydrophobic interactions. Compound 20q dose-dependently inhibited the cell growth and colony formation, effectively arrested cells at the G2/M phase and induce mitochondrial apoptosis in Kyse30 and Kyse450 cells. In addition, Compound 20q could regulate the expression of G2/M phase and mitochondrial apoptosis related proteins. Collectively, compound 20q was here reported as a novel tubulin inhibitor with potential anticancer activities.
Collapse
Affiliation(s)
- Ya-Xin Sun
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Li-Jun Kong
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Bei-Bei Sha
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xin-Yi Tian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiu-Juan Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Tao Hu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ping Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Wang SY, Liu X, Meng LW, Li MM, Li YR, Yu GX, Song J, Zhang HY, Chen P, Zhang SY, Hu T. WITHDRAWN: Discovery of indoline derivatives as anticancer agents via inhibition of tubulin polymerization. Bioorg Med Chem Lett 2021; 45:128131. [PMID: 34022412 DOI: 10.1016/j.bmcl.2021.128131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
Human esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers in human digestive system. It is necessary to discover novel antitumor agents for the treatment of esophageal cancers because of its poor prognosis. Indoline has been reported as an efficient anticancer fragment to design novel anticancer agents. In this work, indoline derivatives were designed, synthesized and explored their anticancer activity. Compound 9d, which exhibited potent antiproliferative activity with IC50 values of 1.84 μM (MGC-803 cells), 6.82 μM (A549 cells), 1.61 μM (Kyse30 cells), 1.49 μM (Kyse450 cells), 2.08 μM (Kyse510 cells) and 2.24 μM (EC-109 cells), respectively. The most active compound 9d was identified as a tubulin inhibitor targeting colchicine binding site with an IC50 value of 3.4 µM. Compound 9d could strongly suppress the tubulin polymerization in Kyse450 cells. The results of molecular docking also suggested compound 9d could tightly bind into the colchicine binding site of β-tubulin. Besides, compound 9d inhibited the growth of KYSE450 cells in time and dose-dependent manners. All the results suggest that the indoline derivatives might be a class of novel tubulin inhibitors with potential anticancer activity and is worthy of further study.
Collapse
Affiliation(s)
- Shu-Yu Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xu Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Ling-Wei Meng
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Miao-Miao Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yin-Ru Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guang-Xi Yu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Yu Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ping Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China.
| | - Tao Hu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
14
|
Discovery of Novel Diarylamide N-Containing Heterocyclic Derivatives as New Tubulin Polymerization Inhibitors with Anti-Cancer Activity. Molecules 2021; 26:molecules26134047. [PMID: 34279387 PMCID: PMC8272053 DOI: 10.3390/molecules26134047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/11/2023] Open
Abstract
Tubulin has been regarded as an attractive and successful molecular target in cancer therapy and drug discovery. Vicinal diaryl is a simple scaffold found in many colchicine site tubulin inhibitors, which is also an important pharmacophoric point of tubulin binding and anti-cancer activity. As the continuation of our research work on colchicine binding site tubulin inhibitors, we designed and synthesized a series of diarylamide N-containing heterocyclic derivatives by the combination of vicinal diaryl core and N-containing heterocyclic skeletons into one hybrid though proper linkers. Among of these compounds, compound 15b containing a 5-methoxyindole group exhibited the most potent inhibitory activity against the tested three human cancer cell lines (MGC-803, PC-3 and EC-109) with IC50 values of 1.56 μM, 3.56 μM and 14.5 μM, respectively. Besides, the SARs of these compounds were preliminarily studied and summarized. The most active compound 15b produced the inhibition of tubulin polymerization in a dose-dependent manner and caused microtubule network disruption in MGC-803 cells. Therefore, compound 15b was identified as a novel tubulin polymerization inhibitor targeting the colchicine binding site. In addition, the results of molecular docking also suggested compound 15b could tightly bind into the colchicine binding site of β-tubulin.
Collapse
|
15
|
Wang SY, Liu X, Meng LW, Li MM, Li YR, Yu GX, Song J, Zhang HY, Chen P, Zhang SY, Hu T. Discovery of indoline derivatives as anticancer agents via inhibition of tubulin polymerization. Bioorg Med Chem Lett 2021; 43:128095. [PMID: 33965530 DOI: 10.1016/j.bmcl.2021.128095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Human esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers in human digestive system. It is necessary to discover novel antitumor agents for the treatment of esophageal cancers because of its poor prognosis. Indoline has been reported as an efficient anticancer fragment to design novel anticancer agents. In this work, indoline derivatives were designed, synthesized and explored their anticancer activity. Compound 9d, which exhibited potent antiproliferative activity with IC50 values of 1.84 μM (MGC-803 cells), 6.82 μM (A549 cells), 1.61 μM (Kyse30 cells), 1.49 μM (Kyse450 cells), 2.08 μM (Kyse510 cells) and 2.24 μM (EC-109 cells), respectively. The most active compound 9d was identified as a tubulin inhibitor targeting colchicine binding site with an IC50 value of 3.4 µM. Compound 9d could strongly suppress the tubulin polymerization in Kyse450 cells. The results of molecular docking also suggested compound 9d could tightly bind into the colchicine binding site of tubulin. Besides, compound 9d inhibited the growth of KYSE450 cells in a time and dose-dependent manner. All the results suggest that the indoline derivatives may be a class of novel tubulin inhibitors with potential anticancer activity, and which is worthy of further study.
Collapse
Affiliation(s)
- Shu-Yu Wang
- School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450001, China
| | - Xu Liu
- School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450001, China; School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Ling-Wei Meng
- School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450001, China; School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Miao-Miao Li
- School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450001, China
| | - Yin-Ru Li
- School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450001, China
| | - Guang-Xi Yu
- School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450001, China; School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Yu Zhang
- School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450001, China
| | - Ping Chen
- School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450001, China
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450001, China; School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China.
| | - Tao Hu
- School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450001, China.
| |
Collapse
|
16
|
Wu CJ, Wu JQ, Hu Y, Pu S, Lin Y, Zeng Z, Hu J, Chen WH. Design, synthesis and biological evaluation of indole-based [1,2,4]triazolo[4,3-a] pyridine derivatives as novel microtubule polymerization inhibitors. Eur J Med Chem 2021; 223:113629. [PMID: 34175541 DOI: 10.1016/j.ejmech.2021.113629] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022]
Abstract
A series of indole-based [1,2,4]triazolo [4,3-a]pyridine derivatives was designed and synthesized as novel microtubulin polymerization inhibitors by using a conformational restriction strategy. These compounds exhibited moderate to potent anti-proliferative activities against a panel of cancer cell lines (HeLa, A549, MCF-7 and HCT116). Among them, compound 12d featuring a N-methyl-5-indolyl substituent at the C-6 position of the [1,2,4]triazolo [4,3-a]pyridine core exhibited the highest antiproliferative activity with the IC50 values ranging from 15 to 69 nM, and remarkable inhibitory effect on tubulin polymerization with an IC50 value of 1.64 μM. Mechanistic studies revealed that compound 12d induced cellular apoptosis and cell cycle arrest at the G2/M phase in a dose-dependent fashion. Moreover, compound 12d significantly suppressed wound closure and disturbed microtubule networks.
Collapse
Affiliation(s)
- Cheng-Jun Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Yunfei Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Suyun Pu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Yuying Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Zimai Zeng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China.
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China.
| |
Collapse
|
17
|
Huo X, Ma Y, Chen Z, Yuan L, Zheng X, Li X, Fengting, Liang, You W, Zhao P. One‐Pot, Multi‐Component Synthesis of Novel 2‐Amino‐[1,2,4]triazolo[1,5‐
a
]pyrimidine‐6‐carboxamide Derivatives as Antiproliferative Agents. ChemistrySelect 2021. [DOI: 10.1002/slct.202100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiansen Huo
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 P.R.China
| | - Yufeng Ma
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 P.R.China
| | - Zhiru Chen
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 P.R.China
| | - Lili Yuan
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 P.R.China
| | - Xiaolan Zheng
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 P.R.China
| | - Xiongli Li
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 P.R.China
| | - Fengting
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 P.R.China
| | - Liang
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 P.R.China
| | - Wenwei You
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 P.R.China
| | - Peiliang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 P.R.China
| |
Collapse
|
18
|
Eissa IH, Dahab MA, Ibrahim MK, Alsaif NA, Alanazi AZ, Eissa SI, Mehany ABM, Beauchemin AM. Design and discovery of new antiproliferative 1,2,4-triazin-3(2H)-ones as tubulin polymerization inhibitors targeting colchicine binding site. Bioorg Chem 2021; 112:104965. [PMID: 34020238 DOI: 10.1016/j.bioorg.2021.104965] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Thirty-five new colchicine binding site inhibitors have been designed and synthesized based on the 1,2,4-triazin-3(2H)-one nucleus. Such molecules were synthesized through a cascade reaction between readily accessible α-amino ketones and phenyl carbazate as a masked N-isocyanate precursor. The synthesized derivatives are cisoid restricted combretastatin A4 analogues containing 1,2,4-triazin-3(2H)-one in place of the olefinic bond, and they have the same essential pharmacophoric features of colchicine binding site inhibitors. The synthesized compounds were evaluated in vitro for their antiproliferative activities against a panel of three human cancer cell lines (MCF-7, HepG-2, and HCT-116), using colchicine as a positive control. Among them, two compounds 5i and 6i demonstrated a significant antiproliferative effect against all cell lines with IC50 ranging from 8.2 - 18.2 µM. Further investigation was carried out for the most active cytotoxic agents as tubulin polymerization inhibitors. Compounds 5i and 6i effectively inhibited microtubule assembly with IC50 values ranging from 3.9 to 7.8 µM. Tubulin polymerization assay results were found to be comparable with the cytotoxicity results. The cell cycle analysis revealed significant G2/M cell cycle arrest of the analogue 5i in HepG-2 cells. The most active compounds 4i, 4j, 5 g, 5i and 6i did not induce significant cell death in normal human lung cells Wl-38, suggesting their selectivity against cancer cells. Also, These compounds upregulated the level of active caspase-3 and boosted the levels of the pro-apoptotic protein Bax by five to seven folds in comparison to the control. Moreover, apoptosis analyses were conducted for compound 5i to evaluate its apoptotic potential. Finally, in silico studies were conducted to reveal the probable interaction with the colchicine binding site. ADME prediction study of the designed compounds showed that they are not only with promising tubulin polymerization inhibitory activity but also with favorable pharmacokinetic and drug-likeness properties.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt.
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt; Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ontario K1N6N5, Canada.
| | - Mohamed K Ibrahim
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - A Z Alanazi
- Department of pharmacology and toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sally I Eissa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh, 13713, Saudi Arabia
| | - Ahmed B M Mehany
- Department of Zoology, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - André M Beauchemin
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ontario K1N6N5, Canada
| |
Collapse
|
19
|
López-López E, Cerda-García-Rojas CM, Medina-Franco JL. Tubulin Inhibitors: A Chemoinformatic Analysis Using Cell-Based Data. Molecules 2021; 26:2483. [PMID: 33923169 PMCID: PMC8123128 DOI: 10.3390/molecules26092483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Inhibiting the tubulin-microtubules (Tub-Mts) system is a classic and rational approach for treating different types of cancers. A large amount of data on inhibitors in the clinic supports Tub-Mts as a validated target. However, most of the inhibitors reported thus far have been developed around common chemical scaffolds covering a narrow region of the chemical space with limited innovation. This manuscript aims to discuss the first activity landscape and scaffold content analysis of an assembled and curated cell-based database of 851 Tub-Mts inhibitors with reported activity against five cancer cell lines and the Tub-Mts system. The structure-bioactivity relationships of the Tub-Mts system inhibitors were further explored using constellations plots. This recently developed methodology enables the rapid but quantitative assessment of analog series enriched with active compounds. The constellations plots identified promising analog series with high average biological activity that could be the starting points of new and more potent Tub-Mts inhibitors.
Collapse
Affiliation(s)
- Edgar López-López
- Departamento de Química y Programa de Posgrado en Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, Mexico City 07000, Mexico;
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carlos M. Cerda-García-Rojas
- Departamento de Química y Programa de Posgrado en Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, Mexico City 07000, Mexico;
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
20
|
Huo XS, Jian XE, Ou-Yang J, Chen L, Yang F, Lv DX, You WW, Rao JJ, Zhao PL. Discovery of highly potent tubulin polymerization inhibitors: Design, synthesis, and structure-activity relationships of novel 2,7-diaryl-[1,2,4]triazolo[1,5-a]pyrimidines. Eur J Med Chem 2021; 220:113449. [PMID: 33895499 DOI: 10.1016/j.ejmech.2021.113449] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 02/08/2023]
Abstract
By removing 5-methyl and 6-acetyl groups in our previously reported compound 3, we designed a series of novel 2,7-diaryl-[1,2,4]triazolo[1,5-a]pyrimidine derivatives as potential tubulin polymerization inhibitors. Among them, compound 5e displayed low nanomolar antiproliferative efficacy on HeLa cells which was 166-fold higher than the lead analogue 3. Interestingly, 5e displayed significant selectivity in inhibiting cancer cells over HEK-293 (normal human embryonic kidney cells). In addition, 5e dose-dependently arrested HeLa in G2/M phase through the alterations of the expression levels of p-cdc2 and cyclin B1, and caused HeLa cells apoptosis by regulation of expressions of cleaved PARP. Further evidence demonstrated that 5e effectively inhibited tubulin polymerization and was 3-fold more powerful than positive control CA-4. Moreover, molecular docking analysis indicated that 5e overlapped well with CA-4 in the colchicine-binding site. These studies demonstrated that 2,7-diaryl-[1,2,4]triazolo[1,5-a]pyrimidine skeleton might be used as the leading unit to develop novel tubulin polymerization inhibitors as potential anticancer agents.
Collapse
Affiliation(s)
- Xian-Sen Huo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Xie-Er Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Jie Ou-Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Fang Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Dong-Xin Lv
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Jin-Jun Rao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China.
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
21
|
Yang F, Chen L, Lai JM, Jian XE, Lv DX, Yuan LL, Liu YX, Liang FT, Zheng XL, Li XL, Wei LY, You WW, Zhao PL. Synthesis, biological evaluation, and structure-activity relationships of new tubulin polymerization inhibitors based on 5-amino-1,2,4-triazole scaffold. Bioorg Med Chem Lett 2021; 38:127880. [PMID: 33636303 DOI: 10.1016/j.bmcl.2021.127880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Based on our previous research, thirty new 5-amino-1H-1,2,4-triazoles possessing 3,4,5-trimethoxyphenyl moiety were synthesized, and evaluated for antiproliferative activities. Among them, compounds IIa, IIIh, and IIIm demonstrated significant antiproliferative activities against a panel of tumor cell lines, and the promising compound IIIm dose-dependently caused G2/M phase arrest in HeLa cells. Furthermore, analogue IIa exhibited the most potent tubulinpolymerization inhibitory activity with an IC50 value of 9.4 μM, and molecular modeling studies revealed that IIa formed stable interactions in the colchicine-binding site of tubulin, suggesting that 5-amino-1H-1,2,4-triazole scaffold has potential for further investigation to develop novel tubulin polymerization inhibitors with anticancer activity.
Collapse
Affiliation(s)
- Fang Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Jin-Mei Lai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xie-Er Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Dong-Xin Lv
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Li-Li Yuan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Yu-Xia Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Feng-Ting Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xiao-Lan Zheng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Xiong-Li Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Li-Yuan Wei
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
22
|
Kode J, Kovvuri J, Nagaraju B, Jadhav S, Barkume M, Sen S, Kasinathan NK, Chaudhari P, Mohanty BS, Gour J, Sigalapalli DK, Ganesh Kumar C, Pradhan T, Banerjee M, Kamal A. Synthesis, biological evaluation, and molecular docking analysis of phenstatin based indole linked chalcones as anticancer agents and tubulin polymerization inhibitors. Bioorg Chem 2020; 105:104447. [PMID: 33207276 DOI: 10.1016/j.bioorg.2020.104447] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023]
Abstract
A library of new phenstatin based indole linked chalcone compounds (9a-z and 9aa-ad) were designed and synthesized. Of these, compound 9a with 1-methyl, 2- and 3-methoxy substituents in the aromatic ring was efficacious against the human oral cancer cell line SCC-29B, spheroids, and in a mouse xenograft model of oral cancer AW13516. Compound 9a exhibited anti-cancer activity through disrupting cellular integrity and affecting glucose metabolism-which is a hallmark of cancer. The cellular architecture was affected by inhibition of tubulin polymerization as observed by an immunofluorescence assay on 9a-treated SCC-29B cells. An in vitro tubulin polymerization kinetics assay provided evidence of direct interaction of 9a with tubulin. This physical interaction between tubulin and compound 9a was further confirmed by Surface Plasmon Resonance (SPR) analysis. Molecular docking experiments and validations revealed that compound 9a interacts and binds at the colchicine binding site of tubulin and at active sites of key enzymes in the glucose metabolism pathway. Based on in silico modeling, biophysical interactions, and pre-clinical observations, 9a consisting of phenstatin based indole-chalcone scaffolds, can be considered as an attractive tubulin polymerization inhibitor candidate for developing anti-cancer therapeutics.
Collapse
Affiliation(s)
- Jyoti Kode
- Anti-Cancer Drug Screening Facility (ACDSF), Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Tumor Immunology & Immunotherapy Group, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400085, India.
| | - Jeshma Kovvuri
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India; Department of Humanities and Sciences, Vardhaman College of Engineering (Autonomous), Shamshabad, Hyderabad, Telangana 501218, India.
| | - Burri Nagaraju
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India.
| | - Shailesh Jadhav
- Anti-Cancer Drug Screening Facility (ACDSF), Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.
| | - Madan Barkume
- Anti-Cancer Drug Screening Facility (ACDSF), Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.
| | - Subrata Sen
- Anti-Cancer Drug Screening Facility (ACDSF), Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.
| | - Nirmal Kumar Kasinathan
- Anti-Cancer Drug Screening Facility (ACDSF), Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.
| | - Pradip Chaudhari
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400085, India; Small Animal Imaging Facility, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.
| | - Bhabani Shankar Mohanty
- Small Animal Imaging Facility, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.
| | - Jitendra Gour
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - C Ganesh Kumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India.
| | - Trupti Pradhan
- Tumor Immunology & Immunotherapy Group, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.
| | - Manisha Banerjee
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400085, India; Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.
| | - Ahmed Kamal
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India; Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India; School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|