1
|
Manna T, Maji S, Maity M, Debnath B, Panda S, Khan SA, Nath R, Akhtar MJ. Anticancer potential and structure activity studies of purine and pyrimidine derivatives: an updated review. Mol Divers 2024:10.1007/s11030-024-10870-4. [PMID: 38856835 DOI: 10.1007/s11030-024-10870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 06/11/2024]
Abstract
Cancer is the world's leading cause of death impacting millions of lives globally. The increasing research over the past several decades has focused on the development of new anticancer drugs, but still cancer continues to be a global health challenge. Thus, several new alternative therapeutic strategies have been tried for the drug design and discovery. Purine and pyrimidine heterocyclic compounds have received attention recently due to their potential in targeting various cancers. It is evident from the recently published data over the last decade that incorporation of the purine and pyrimidine rings in the synthesized derivatives resulted in the development of potent anticancer molecules. This review presents synthetic strategies encompassing several examples of recently developed purine and pyrimidine-containing compounds as anticancer agents. In addition, their structure-activity relationships are represented in the schemes indicating the fragment or groups that are essential for the enhanced anticancer activities. Purine and pyrimidines combined with other heterocyclic compounds have resulted in many novel anticancer molecules that address the challenges of drug resistance. The purine and pyrimidine derivatives showed significantly enhanced anticancer activities against targeted receptor proteins with numerous compounds with an IC50 value in the nanomolar range. The review will support medicinal chemists and contribute in progression and development of synthesis of more potent chemotherapeutic drug candidates to mitigate the burden of this dreadful disease.
Collapse
Affiliation(s)
- Tanushree Manna
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Sumit Maji
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Mousumi Maity
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Biplab Debnath
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Shambo Panda
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC 130, Azaiba, Bousher, PO 620, Muscat, Sultanate of Oman
| | - Rajarshi Nath
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India.
- JIS University, Agarpara Campus, Kolkata-81, Nilgunj Road, Agarpara, Kolkata, 700109, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC 130, Azaiba, Bousher, PO 620, Muscat, Sultanate of Oman.
| |
Collapse
|
2
|
Balije Rakesh, Divya P, KVN R, Muripiti V, Velidandi A. Preparation, In Silico Studies, In Vitro Antibacterial and Antioxidantal Activity of 4,6-Disubstituted Dihydropyrimidine Thiones. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162023010247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Novel pyrazolo[3,4-d]pyrimidines as potential anticancer agents: Synthesis, VEGFR-2 inhibition, and mechanisms of action. Biomed Pharmacother 2022; 156:113948. [DOI: 10.1016/j.biopha.2022.113948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022] Open
|
4
|
Ahmad S, Hanif M, Monim-ul-Mehboob M, Isab AA, Alotaibi MA, Ahmad T. Versatile coordination chemistry of mixed ligand silver(I) complexes of phosphanes and thioamides: Structural features and biological properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Shyamsivappan S, Vivek R, Suresh T, Naveen P, Kaviyarasu A, Amsaveni S, Athimoolam S, Mohan PS. New N-(3′-acetyl-8-nitro-2,3-dihydro-1 H,3′ H-spiro[quinoline-4,2′-[1,3,4]thiadiazol]-5′-yl) acetamides induced cell death in MCF-7 cells via G2/M phase cell cycle arrest. NEW J CHEM 2022. [DOI: 10.1039/d1nj02550c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of new N-(3′-acetyl-8-nitro-2,3-dihydro-1H,3′H-spiro[quinoline-4,2′-[1,3,4]thiadiazol]-5′-yl) acetamide derivatives were synthesized from potent 8-nitroquinoline-thiosemicarbazones.
Collapse
Affiliation(s)
- Selvaraj Shyamsivappan
- School of Chemical Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
- Department of Chemistry, Dr N.G.P. Arts and Science College, Coimbatore 641048, Tamil Nadu, India
| | - Raju Vivek
- Cancer Research Program (CRP), Bio-Nano Therapeutics Research Laboratory, School of Life Sciences, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Thangaraj Suresh
- School of Chemical Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Palanivel Naveen
- Department of Chemistry, Dr N.G.P. Arts and Science College, Coimbatore 641048, Tamil Nadu, India
| | - Adhigaman Kaviyarasu
- School of Chemical Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sundarasamy Amsaveni
- School of Chemical Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | | | | |
Collapse
|
6
|
Biological Screening and Radiolabeling of Raptinal as a Potential Anticancer Novel Drug in Hepatocellular Carcinoma Model. Eur J Pharm Sci 2021; 158:105653. [DOI: 10.1016/j.ejps.2020.105653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/26/2020] [Accepted: 11/21/2020] [Indexed: 12/21/2022]
|
7
|
Khedr MA, Abu-Zied KM, Zaghary WA, Aly AS, Shouman DN, Haffez H. Novel thienopyrimidine analogues as potential metabotropic glutamate receptors inhibitors and anticancer activity: Synthesis, In-vitro, In-silico, and SAR approaches. Bioorg Chem 2021; 109:104729. [PMID: 33676314 DOI: 10.1016/j.bioorg.2021.104729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/12/2021] [Accepted: 02/06/2021] [Indexed: 12/14/2022]
Abstract
There is a continuous need in drug development approach for synthetic anticancer analogues with new therapeutic targets to diminish chemotherapeutic resistance of cancer cells. This study presents new group of synthetic thienopyrimidine analogues (1-9) aims as mGluR-1 inhibitors with anticancer activity. In-vitro antiproliferative assessment was carried out using viability assay against cancer cell lines (MCF-7, A-549 and PC-3) compared to WI-38 normal cell line. Analogues showed variable anticancer activity with IC50 ranging from 6.60 to 121 µg/mL with compound 7b is the most potent analogue against the three cancer cell lines (MCF-7; 6.57 ± 0.200, A-549; 6.31 ± 0.400, PC-3;7.39 ± 0.500 µg/mL) compared to Doxorubicin, 5-Flurouracil and Riluzole controls. Selected compounds were tested as mGluR-1 inhibitors in MCF-7 cell line and results revealed compound 7b induced significant reduction in extracellular glutamate release (IC50; 4.96 ± 0.700 µM) compared to other analogues and next to Riluzole (IC50; 2.80 ± 0.500 µM) of the same suggested mode of action. Furthermore, both cell cycle and apoptosis assays confirmed the potency of compound 7b for early apoptosis of MCF-7 at G2/M phase and apoptotic positive cell shift to (91.4%) compared to untreated control (19.6%) and Raptinal positive control (51.4%). On gene expression level, compound 7b induced over-expression of extrinsic (FasL, TNF-α and Casp-8), intrinsic (Cyt-C, Casp-3, Bax) apoptotic genes with down-regulation of anti-apoptotic Bcl-2 gene with boosted Bax/Bcl-2 ratio to 2.6-fold increase. Molecular docking and dynamic studies confirmed the biological potency through strong binding and stability modes of 7b where it was faster in reaching the equilibrium point and achieving the stability than Riluzole over 20 ns MD. These results suggest compound 7b as a promising mGluR inhibitory scaffold with anticancer activity that deserves further optimization and in-depth In-vivo and clinical investigations.
Collapse
Affiliation(s)
- Mohammed A Khedr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt.
| | - Khadiga M Abu-Zied
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Giza 12622, Egypt
| | - Wafaa A Zaghary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt.
| | - Ahmed S Aly
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Giza 12622, Egypt
| | - Dina N Shouman
- Family Medicine Center, Egyptian Ministry of Health and Population, Dakahlia, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt; Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, Cairo 11795, Egypt
| |
Collapse
|
8
|
Abdelaal MR, Soror SH, Elnagar MR, Haffez H. Revealing the Potential Application of EC-Synthetic Retinoid Analogues in Anticancer Therapy. Molecules 2021; 26:506. [PMID: 33477997 PMCID: PMC7835894 DOI: 10.3390/molecules26020506] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background and Aim: All-trans retinoic acid (ATRA) induces differentiation and inhibits growth of many cancer cells. However, resistance develops rapidly prompting the urgent need for new synthetic and potent derivatives. EC19 and EC23 are two synthetic retinoids with potent stem cell neuro-differentiation activity. Here, these compounds were screened for their in vitro antiproliferative and cytotoxic activity using an array of different cancer cell lines. (2) Methods: MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, AV/PI (annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI)), cell cycle analysis, immunocytochemistry, gene expression analysis, Western blotting, measurement of glutamate and total antioxidant concentrations were recruited. (3) Results: HepG2, Caco-2, and MCF-7 were the most sensitive cell lines; HepG2 (ATRA; 36.2, EC19; 42.2 and EC23; 0.74 µM), Caco-2 (ATRA; 58.0, EC19; 10.8 and EC23; 14.7 µM) and MCF-7 (ATRA; 99.0, EC19; 9.4 and EC23; 5.56 µM). Caco-2 cells were selected for further biochemical investigations. Isobologram analysis revealed the combined synergistic effects with 5-fluorouracil with substantial reduction in IC50. All retinoids induced apoptosis but EC19 had higher potency, with significant cell cycle arrest at subG0-G1, -S and G2/M phases, than ATRA and EC23. Moreover, EC19 reduced cellular metastasis in a transwell invasion assay due to overexpression of E-cadherin, retinoic acid-induced 2 (RAI2) and Werner (WRN) genes. (4) Conclusion: The present study suggests that EC-synthetic retinoids, particularly EC19, can be effective, alone or in combinations, for potential anticancer activity to colorectal cancer. Further in vivo studies are recommended to pave the way for clinical applications.
Collapse
Affiliation(s)
- Mohamed R. Abdelaal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (M.R.A.); (S.H.S.)
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Sameh H. Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (M.R.A.); (S.H.S.)
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Mohamed R. Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt;
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (M.R.A.); (S.H.S.)
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| |
Collapse
|