1
|
Zaręba P, Drabczyk AK, Wnorowski A, Maj M, Malarz K, Rurka P, Latacz G, Duszyńska B, Ciura K, Greber KE, Boguszewska-Czubara A, Śliwa P, Kuliś J. Low-Basicity 5-HT 6 Receptor Ligands from the Group of Cyclic Arylguanidine Derivatives and Their Antiproliferative Activity Evaluation. Int J Mol Sci 2024; 25:10287. [PMID: 39408617 PMCID: PMC11477289 DOI: 10.3390/ijms251910287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
The serotonin 5-HT6 receptor (5-HT6R), expressed almost exclusively in the brain, affects the Cdk5 signaling as well as the mTOR pathway. Due to the association of 5-HT6R signaling with pathways involved in cancer progression, we decided to check the usefulness of 5-HT6R ligands in the treatment of CNS tumors. For this purpose, a new group of low-base 5-HT6R ligands was developed, belonging to arylsulfonamide derivatives of cyclic arylguanidines. The selected group of molecules was also tested for their antiproliferative activity on astrocytoma (1321N1) and glioblastoma (U87MG, LN-229, U-251) cell lines. Some of the molecules were subjected to ADMET tests in vitro, including lipophilicity, drug binding to plasma proteins, affinity for phospholipids, drug-drug interaction (DDI), the penetration of the membrane (PAMPA), metabolic stability, and hepatotoxicity as well as in vivo cardiotoxicity in the Danio rerio model. Two antagonists with an affinity constant Ki < 50 nM (PR 68Ki = 37 nM) were selected. These compounds were characterized by very high selectivity. An analysis of pharmacokinetic parameters for the lead compound PR 68 confirmed favorable properties for administration, including passive diffusion and acceptable metabolic stability (metabolized in 49%, MLMs). The compound did not exhibit the potential for drug-drug interactions.
Collapse
Affiliation(s)
- Przemysław Zaręba
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland;
| | - Anna K. Drabczyk
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland; (A.K.D.); (P.Ś.)
| | - Artur Wnorowski
- Department of Biopharmacy, Faculty of Pharmacy, Medical University, 4a Chodźki Street, 20-093 Lublin, Poland; (A.W.); (M.M.)
| | - Maciej Maj
- Department of Biopharmacy, Faculty of Pharmacy, Medical University, 4a Chodźki Street, 20-093 Lublin, Poland; (A.W.); (M.M.)
| | - Katarzyna Malarz
- Department of Systems Biology and Engineering, Silesian University of Technology, 11 Akademicka Street, 44-100 Gliwice, Poland;
- Institute of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty Street, 41-500 Chorzow, Poland;
| | - Patryk Rurka
- Institute of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty Street, 41-500 Chorzow, Poland;
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Cracow, Poland;
| | - Beata Duszyńska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology—Polish Academy of Sciences, 12 Smętna Street, 31-343 Cracow, Poland;
| | - Krzesimir Ciura
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 107 Al. Gen. J. Hallera Street, 80-416 Gdansk, Poland; (K.C.); (K.E.G.)
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308 Gdansk, Poland
| | - Katarzyna Ewa Greber
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 107 Al. Gen. J. Hallera Street, 80-416 Gdansk, Poland; (K.C.); (K.E.G.)
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland;
| | - Paweł Śliwa
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland; (A.K.D.); (P.Ś.)
| | - Julia Kuliś
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland;
| |
Collapse
|
2
|
Kułaga D, Drabczyk AK, Zaręba P, Jaśkowska J, Chrzan J, Ewa Greber K, Ciura K, Plażuk D, Wielgus E. Green synthesis of 1,3,5-triazine derivatives using a sonochemical protocol. ULTRASONICS SONOCHEMISTRY 2024; 108:106951. [PMID: 38878716 PMCID: PMC11227021 DOI: 10.1016/j.ultsonch.2024.106951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
1,3,5-triazine derivatives are useful compounds with potential applications in various branches of chemical industry, including pharmaceutical chemistry, cosmetic chemistry, photochemistry, and organic chemistry. Due to the growing environmental requirements on conducting efficient, economical, and safe syntheses, development of new methods for synthesizing organic compounds is highly desirable. In this publication, we present a protocol for the synthesis of 1,3,5-triazine derivatives using a sonochemical approach. In as little as 5 min, it is possible to obtain most of the investigated compounds with a yield of over 75%. An undeniable advantage of this method, besides its short time, is the use of water as the solvent. Furthermore, we provide examples that the sonochemical method may be more versatile than the competing microwave method. Analysis conducted using the DOZNTM 2.0 tool revealed that in terms of the 12 principles of green chemistry, the developed sonochemical method is 13 times "greener" than the classical one. Additionally, it has been demonstrated that the investigated molecules are attractive for their application as drug-like compounds.
Collapse
Affiliation(s)
- Damian Kułaga
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland.
| | - Anna K Drabczyk
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland
| | - Przemysław Zaręba
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland
| | - Jolanta Jaśkowska
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland
| | - Julia Chrzan
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland
| | - Katarzyna Ewa Greber
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Aleja Generała Józefa Hallera 107, 80-416 Gdansk, Poland
| | - Krzesimir Ciura
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Aleja Generała Józefa Hallera 107, 80-416 Gdansk, Poland; Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Damian Plażuk
- University of Lodz, Faculty of Chemistry, Department of Organic Chemistry, Laboratory of Molecular Spectroscopy, 12 Tamka Street, 91-403 Łódź, Poland
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science,112 Sienkiewicza Street, 90-363 Łódź, Poland
| |
Collapse
|
3
|
Shawish I, Nafie MS, Barakat A, Aldalbahi A, Al-Rasheed HH, Ali M, Alshaer W, Al Zoubi M, Al Ayoubi S, De la Torre BG, Albericio F, El-Faham A. Pyrazolyl-s-triazine with indole motif as a novel of epidermal growth factor receptor/cyclin-dependent kinase 2 dual inhibitors. Front Chem 2022; 10:1078163. [PMID: 36505739 PMCID: PMC9732672 DOI: 10.3389/fchem.2022.1078163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
A series of pyrazolyl-s-triazine compounds with an indole motif was designed, synthesized, and evaluated for anticancer activity targeting dual EGFR and CDK-2 inhibitors. The compounds were tested for cytotoxicity using the MTT assay. Compounds 3h, 3i, and 3j showed promising cytotoxic activity against two cancer cell lines, namely A549, MCF-7, and HDFs (non-cancerous human dermal fibroblasts). Compound 3j was the most active candidate against A549, with an IC50 of 2.32 ± 0.21 μM. Compounds 3h and 3i were found to be the most active hybrids against MCF-7 and HDFs, with an IC50 of 2.66 ± 0.26 μM and 3.78 ± 0.55 μM, respectively. Interestingly, 3i showed potent EGFR inhibition, with an IC50 of 34.1 nM compared to Erlotinib (IC50 = 67.3 nM). At 10 μM, this candidate caused 93.6% and 91.4% of EGFR and CDK-2 inhibition, respectively. Furthermore, 3i enhanced total lung cancer cell apoptosis 71.6-fold (43.7% compared to 0.61% for the control). Given the potent cytotoxicity exerted by 3i through apoptosis-mediated activity, this compound emerges as a promising target-oriented anticancer agent.
Collapse
Affiliation(s)
- Ihab Shawish
- Department of Math and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia,Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismaïlia, Egypt
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia,*Correspondence: Assem Barakat, ; Fernando Albericio, ; Ayman El-Faham,
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hessa H. Al-Rasheed
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M. Ali
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Mazhar Al Zoubi
- Department of Basic Medical Sciences, Faculty of Sciences, Yarmouk University, Irbid, Jordan
| | - Samha Al Ayoubi
- Department of Math and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia
| | - Beatriz G. De la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP) School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa,Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa,CIBER-BBN (Networking Centre on Bioengineering, Biomaterials and Nanomedicine) and Department of Organic Chemistry, University of Barcelona, Barcelona, Spain,*Correspondence: Assem Barakat, ; Fernando Albericio, ; Ayman El-Faham,
| | - Ayman El-Faham
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt,*Correspondence: Assem Barakat, ; Fernando Albericio, ; Ayman El-Faham,
| |
Collapse
|
4
|
Ultrasound assisted one-pot synthesis and preliminary in vitro studies of salicylamide arylpiperazines as dual 5-HT1A/5-HT7 ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Kułaga D, Drabczyk AK, Satała G, Latacz G, Boguszewska-Czubara A, Plażuk D, Jaśkowska J. Design, Synthesis and Biological Evaluation of Novel 1,3,5-Triazines: Effect of Aromatic Ring Decoration on Affinity to 5-HT 7 Receptor. Int J Mol Sci 2022; 23:13308. [PMID: 36362096 PMCID: PMC9656787 DOI: 10.3390/ijms232113308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 10/20/2023] Open
Abstract
Considering the key functions of the 5-HT7 receptor, especially in psychiatry, and the fact that effective and selective 5-HT7 receptor ligands are yet to be available, in this work, we designed and synthesized novel 1,3,5-triazine derivatives particularly based on the evaluation of the effect of substituents at aromatic rings on biological activity. The tested compounds showed high affinity to the 5-HT7 receptor, particularly ligands N2-(2-(5-fluoro-1H-indol-3-yl)ethyl)-N4-phenethyl-1,3,5-triazine-2,4,6-triamine 2 (Ki = 8 nM) and N2-(2-(1H-indol-3-yl)ethyl)-N4-(2-((4-fluorophenyl)amino)ethyl)-1,3,5-triazine-2,4,6-triamine 12 (Ki = 18 nM) which showed moderate metabolic stability, and affinity to the CYP3A4 isoenzyme. As for the hepatotoxicity evaluation, the tested compounds showed moderate cytotoxicity only at concentrations above 50 µM. Compound 12 exhibited less cardiotoxic effect than 2 on Danio rerio in vivo model.
Collapse
Affiliation(s)
- Damian Kułaga
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Anna Karolina Drabczyk
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, ul. Chodźki 4a, 20-093 Lublin, Poland
| | - Damian Plażuk
- Laboratory of Molecular Spectroscopy, Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, ul. Tamka 12, 91-403 Łódź, Poland
| | - Jolanta Jaśkowska
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| |
Collapse
|
6
|
Zaręba P, Śliwa P, Satała G, Zajdel P, Latacz G, Jaśkowska J. New N-aryl-N′-aryl-/(thio)ureido-/sulfamoylamino-derivatives of alkyl/alkylcarbamoyl piperazines: Effect of structural modifications on selectivity over 5-HT1A receptor. Eur J Med Chem 2022; 235:114319. [DOI: 10.1016/j.ejmech.2022.114319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/12/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
|
7
|
Design and synthesis of new potent 5-HT 7 receptor ligands as a candidate for the treatment of central nervous system diseases. Eur J Med Chem 2022; 227:113931. [PMID: 34710746 DOI: 10.1016/j.ejmech.2021.113931] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/03/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022]
Abstract
Owing to their multifunctional pharmacological profiles (including dual 5-HT1A/5-HT7 action), arylpiperazine derivatives are widely used for treating central nervous system diseases including the depression or neuropathic pain. Herein we describe the design, synthesis and evaluation of biological activity of novel 5-HT7 ligands derived of 2,4,6-triamino-1,3,5-triazine. The studied compounds showed affinity and high selectively towards 5-HT7 receptor with the two most active compounds 34 (Ki = 61 nM), 22 (Ki = 109 nM) showing good metabolic stability and moderate affinity to CYP3A4 isoenzyme. Compound 22 had high hepatotoxicity at a concentration below 50 μM, while compound 34 showed low hepatotoxicity even at a concentration above 50 μM.
Collapse
|
8
|
Jankowska A, Satała G, Świerczek A, Pociecha K, Partyka A, Jastrzębska-Więsek M, Głuch-Lutwin M, Bojarski AJ, Wyska E, Chłoń-Rzepa G. A new class of 5-HT 1A receptor antagonists with procognitive and antidepressant properties. Future Med Chem 2021; 13:1497-1514. [PMID: 34253032 DOI: 10.4155/fmc-2020-0363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Aims: 5-HT1A receptor antagonists constitute a potential group of drugs in the treatment of CNS diseases. The aim of this study was to search for new procognitive and antidepressant drugs among amide derivatives of aminoalkanoic acids with 5-HT1A receptor antagonistic properties. Materials & methods: Thirty-three amides were designed and evaluated in silico for their drug-likeness. The synthesized compounds were tested in vitro for their 5-HT1A receptor affinity and functional profile. Moreover, their selectivity over 5-HT7, 5-HT2A and D2 receptors and ability to inhibit phosphodiesterases were evaluated. Results: A selected 5-HT1A receptor antagonist 20 (Ki = 35 nM, Kb = 4.9 nM) showed procognitive and antidepressant activity in vivo. Conclusion: Novel 5-HT1A receptor antagonists were discovered and shown as potential psychotropic drugs.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Grzegorz Satała
- Polish Academy of Sciences, Maj Institute of Pharmacology, Department of Medicinal Chemistry, 12 Smętna Street, 31-343, Kraków, Poland
| | - Artur Świerczek
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics & Physical Pharmacy, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Krzysztof Pociecha
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics & Physical Pharmacy, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Anna Partyka
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Clinical Pharmacy, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Magdalena Jastrzębska-Więsek
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Clinical Pharmacy, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Monika Głuch-Lutwin
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacobiology, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Andrzej J Bojarski
- Polish Academy of Sciences, Maj Institute of Pharmacology, Department of Medicinal Chemistry, 12 Smętna Street, 31-343, Kraków, Poland
| | - Elżbieta Wyska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics & Physical Pharmacy, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Grażyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688, Kraków, Poland
| |
Collapse
|
9
|
Panchal J, Jain S, Jain PK, Kishore D, Dwivedi J. Greener approach toward synthesis of biologically active
s
‐Triazine
(
TCT
) derivatives: A recent update. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jigar Panchal
- Department of Chemistry Banasthali Vidyapith Banasthali India
| | - Sonika Jain
- Department of Chemistry Banasthali Vidyapith Banasthali India
| | | | - Dharma Kishore
- Department of Chemistry Banasthali Vidyapith Banasthali India
| | - Jaya Dwivedi
- Department of Chemistry Banasthali Vidyapith Banasthali India
| |
Collapse
|