1
|
Zhang X, Han MJ, Han XY, Jia JH, Lu RY, Yao GD, Liu YY, Bai M, Song SJ. MS/MS-based molecular networking discovery of sesquiterpenes from Carpesium abrotanoides L. with their cytotoxic and acetylcholinesterase inhibitory activity. Fitoterapia 2024; 175:105947. [PMID: 38570097 DOI: 10.1016/j.fitote.2024.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
Employing an MS/MS-based molecular networking-guided strategy, three new eudesmane-type sesquiterpenes (1-3) and one undescribed pseudoguaianolide sesquiterpene (8), along with four known eudesmane-type sesquiterpene lactones (4-7) were extracted and purified from the herbs of Carpesium abrotanoides L. Structural elucidation encompassed comprehensive spectroscopic analysis, NMR calculations, DP4+ analysis, and ECD calculations. The cytotoxicity activity of all isolates was evaluated against two human hepatoma carcinoma cells (HepG2 and Hep3B) in vitro. It was demonstrated that compounds 2 and 4 showed moderate cytotoxic against HepG2 and Hep3B cells. Furthermore, all compounds were evaluated for their acetylcholinesterase (AChE) inhibitory activity. Particularly noteworthy is that, in comparison to the positive control, compound 1 demonstrated significant AChE inhibition with an inhibition rate of 77.86%. In addition, the inhibitory mechanism of compound 1 were investigated by in silico docking analyze and molecular dynamic simulation.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Mei-Juan Han
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xiao-Yu Han
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Jian-Huan Jia
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Rui-Yan Lu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Yu-Yang Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
2
|
Rao QR, Rao JB, Zhao M. The specialized sesquiterpenoids produced by the genus Elephantopus L.: Chemistry, biological activities and structure-activity relationship exploration. PHYTOCHEMISTRY 2024; 221:114041. [PMID: 38442848 DOI: 10.1016/j.phytochem.2024.114041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
The genus Elephantopus L. is a valuable resource rich in sesquiterpenoids with structural diversity and various bioactivities, showing great potential for applications in medicinal field and biological industry. Up to now, over 129 sesquiterpenoids have been isolated and identified from this plant genus, including 114 germacrane-type, 7 guaianolide-type, 5 eudesmane-type, 1 elemanolide-type, and 2 bis-sesquiterpenoids. These sesquiterpenoids were reported to show a diverse range of pharmacological properties, including cytotoxic, anti-tumor, anti-inflammatory, antimicrobial, and antiprotozoal. Consequently, some of them were identified as active scaffolds in the design and development of drugs. Considering that there is currently no overview available that covers the sesquiterpenoids and their biological activities in the Elephantopus genus, this article aims to comprehensively review the chemical structures, biosynthetic pathways, pharmacological properties, and structure-activity relationship of sesquiterpenoids found in the Elephantopus genus, which will establish a theoretical framework that can guide further research and exploration of sesquiterpenoids from Elephantopus plants as promising therapeutic agents.
Collapse
Affiliation(s)
- Qian-Ru Rao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China; Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jian-Bo Rao
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Min Zhao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
3
|
Zhao X, Zheng Z, Chen C, Wang H, Liu H, Li J, Sun C, Lou H, Pan W. New clerodane diterpenoids from Callicarpa pseudorubella and their antitumor proliferative activity. Fitoterapia 2024; 174:105878. [PMID: 38417683 DOI: 10.1016/j.fitote.2024.105878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Six previously undescribed clerodane diterpenes, cardorubellas A-F (1-6), along with seven known ones (7-13), were isolated from the aerial parts of Callicarpa pseudorubella. Their chemical structures were established by analysis of 1D and 2D NMR, HR-ESI-MS, X-ray diffraction, and electronic circular dichroism (ECD) data. Notably, cardorubella B (2) represented the first examples of naturally occurring succinic anhydride-containing clerodane diterpenes derivatives. The anti-proliferative activities of these compounds were assessed. Remarkably, compound 2 exhibited comparable inhibitory activity against HEL cell lines, surpassing the positive control with an IC50 value of 14.01 ± 0.77 μM, compared to 17.02 ± 4.70 μM for 5-fluorouracil.
Collapse
Affiliation(s)
- Xing Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Zhaopeng Zheng
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang 550005, China
| | - Chao Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Huan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Hanfei Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Jinyu Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Chao Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| | - Huayong Lou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Zou D, Liu F, Liu L, Xu H, Li D, Hua H. Cytotoxic xanthones from Garcinia pedunculata fruits. PHYTOCHEMISTRY 2024; 217:113898. [PMID: 37875167 DOI: 10.1016/j.phytochem.2023.113898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023]
Abstract
Eight previously undescribed and seven known xanthones were isolated from the fruits of Garcinia pedunculata Roxb. The structures were identified by a variety of spectroscopic methods as well as by comparison with the literature. The isolates showed appreciable cytotoxicity against three human tumor cell lines (HepG2, A549, and MCF-7). Pedunculaxanthone G exhibited inhibitory activities with IC50 values of 12.41, 16.51, and 15.45 μM against the cancer cell lines and induced cell apoptosis in HepG2 cells.
Collapse
Affiliation(s)
- Deli Zou
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Fangshen Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Lei Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Huarong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
5
|
Chen JJ, Yan QL, Bai M, Liu Q, Song SJ, Yao GD. Deoxyelephantopin, a germacrane-type sesquiterpene lactone from Elephantopus scaber, induces mitochondrial apoptosis of hepatocarcinoma cells by targeting Hsp90α in vitro and in vivo. Phytother Res 2023; 37:702-716. [PMID: 36420857 DOI: 10.1002/ptr.7654] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/25/2022]
Abstract
Hepatocellular carcinoma has been known as the most frequent subtype of liver cancer with a high rate of spread, metastases, and recurrence, also dismal treatment effects. However, effective therapies for HCC are still required. Nowadays, natural products have been known as a valuable source for drug discovery. In this research, 44 sesquiterpene lactones isolated from the Elephantopus scaber Linn. (Asteraceae) were tested by MTT assay for the antitumor activities. Deoxyelephantopin (DET) was found to exert significant cytotoxicity on HepG2 and Hep3B cells. Moreover, we found that DET treatment markedly reduced the growth of HCC cells in a concentration-dependent manner, which was better than sorafenib. Furthermore, DET induced mitochondrial dysfunction, oxidative stress, and cellular apoptosis. Additionally, we found that DET and sorafenib synergistically induced apoptosis and mitochondrial dysfunction in HCC cells. DET combined with sorafenib was also efficacious in tumor xenograft model. Molecular docking experiments revealed that DET had a potentially high binding affinity with Hsp90α. Moreover, Drug Affinity Responsive Target Stability assay suggested that DET could directly target Hsp90α. Additionally, the expression of Hsp90α was both decreased in vitro and in vivo. Altogether, this study revealed that DET might be a promising agent for HCC therapy by targeting Hsp90α.
Collapse
Affiliation(s)
- Jing-Jie Chen
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiu-Lin Yan
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
6
|
Bai M, Xu W, Zhang X, Li Q, Du NN, Liu DF, Yao GD, Lin B, Song SJ, Huang XX. HSQC-based small molecule accurate recognition technology discovery of diverse cytotoxic sesquiterpenoids from Elephantopus tomentosus L. and structural revision of molephantins A and B. PHYTOCHEMISTRY 2023; 206:113562. [PMID: 36526100 DOI: 10.1016/j.phytochem.2022.113562] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Elephantopus tomentosus L. is a perennial herb taxonomically belonging to the family Asteraceae, which has been used as a folk medicine for the treatment of hepatobiliary diseases. Sesquiterpenoids from this plant have broad biological activities, including anti-tumor, anti-inflammatory, and antibacterial effects. In this study, fifteen structurally diverse sesquiterpenoids comprised 11 germacrane-type and 4 eudesmane-type sesquiterpenoids were prioritized to isolated from Elephantopus tomentosus L. based on the HSQC-based Small Molecule Accurate Recognition Technology (SMART) strategy. Among them, ten sesquiterpenoids were previously unreported, and their structures were elucidated by spectroscopic data, computational methods, single-crystal X-ray diffraction crystallographic data or electronic circular dichroism calculations. In addition, the structures of two known sesquiterpenoids, molephantin A and B, which were reported to possess E-geometry for the Δ1(10) double bond, were revised by reanalyzing their spectroscopic and X-ray crystallographic data. Some sesquiterpenoids exhibited significant cytotoxic activities against Hep3B and HepG2 cell lines.
Collapse
Affiliation(s)
- Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Wei Xu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xin Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Qian Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Ning-Ning Du
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - De-Feng Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
7
|
Guo R, Li Q, Mi SH, Jia SH, Yao GD, Lin B, Huang XX, Liu YY, Song SJ. Target isolation of cytotoxic diterpenoid esters and orthoesters from Daphne tangutica maxim based on molecular networking. PHYTOCHEMISTRY 2022; 203:113358. [PMID: 35977604 DOI: 10.1016/j.phytochem.2022.113358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/19/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Guiding by LC-MS/MS analysis and the GNPS Molecular Networking, five undescribed daphnane diterpenoids, tanguticanines A-E, and eleven known analogues were discovered from the whole plants of Daphne tangutica Maxim. Their structures and absolute configurations were determined via extensive NMR spectroscopic analysis, ECD calculations, and X-ray diffraction crystallography. Tanguticanine E (5) exhibited promising cytotoxicity against the HepG2 cell line with an IC50 value of 9.93 ± 0.10 μM. Further flow cytometry experiment was performed to detect cell apoptosis, and the results indicated that cytotoxic diterpenoids (tanguticanines B, D and E, altadaphnan C, gniditrin, hirsein A and simplexin) exert their effects through induction of apoptosis.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qian Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Si-Hui Mi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shu-He Jia
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yu-Yang Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
8
|
Bai M, Xu W, Li Q, Liu DF, Lv TM, Du NN, Yao GD, Lin B, Song SJ, Huang XX. Highly Oxidized Germacranolides from Elephantopus tomentosus and the Configurational Revision of Some Previously Reported Analogues. JOURNAL OF NATURAL PRODUCTS 2022; 85:2433-2444. [PMID: 36223633 DOI: 10.1021/acs.jnatprod.2c00630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Highly oxidized germacranolides are mainly found in the genus Elephantopus, contain a characteristic ten-membered molecular core that is highly flexible, and exhibit potential cytotoxic properties. However, their configurations were assigned ambiguously in previous reports due to spectroscopic observation of macrocyclic systems. Herein, 17 highly oxidized germacranolides, including 12 new germacranolides (1-12), were isolated from Elephantopus tomentosus. Their structures were characterized by spectroscopic data analysis combined with X-ray crystallography and ECD calculations, and it was possible to propose configurational revisions of five previously reported analogues (13-17). Cytotoxic activities for 1-17 against two hepatocellular carcinoma cell lines (HepG2 and Hep3B) were tested, and compounds 1-10 and 13-16 generated IC50 values of 2.2-9.8 μM. Furthermore, the observed cytotoxic activity of 1 was determined as being mediated by inducing the apoptosis of HepG2 and Hep3B cells via mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Wei Xu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Qian Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - De-Feng Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Tian-Ming Lv
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ning-Ning Du
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
9
|
Yan QL, Wang XY, Bai M, Zhang X, Song SJ, Yao GD. Sesquiterpene lactones from Elephantopus scaber exhibit cytotoxic effects on glioma cells by targeting GSTP1. Bioorg Chem 2022; 129:106183. [DOI: 10.1016/j.bioorg.2022.106183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/29/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022]
|
10
|
ZHANG YJ, BAI M, LI JY, QIN SY, LIU YY, HUANG XX, ZHENG J, SONG SJ. Diverse sesquiterpenoids from Litsea lancilimba Merr. with potential neuroprotective effects against H2O2-induced SH-SY5Y cell injury. Chin J Nat Med 2022; 20:701-711. [DOI: 10.1016/s1875-5364(22)60199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/26/2022]
|
11
|
Chemical structures and anti-tyrosinase activity of the constituents from Elephantopus scaber L. Fitoterapia 2022; 162:105259. [PMID: 35931288 DOI: 10.1016/j.fitote.2022.105259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 11/24/2022]
Abstract
Four undescribed compounds including one germacrane-type sesquiterpene lactones (1), alkaloid (2) along with two neolignans (3-4) were isolated from Elephantopus scaber L. Their structures and absolute configurations were elucidated unambiguously by means of 1D and 2D NMR spectroscopic data analysis, and quantum chemical electronic circular dichroism calculations, as well as single-crystal X-ray crystallography. Their anti-tyrosinase activities have been evaluated in vitro and compound 2 exhibited significant inhibitory activity. Furthermore, molecular docking was performed to study the interaction patterns between 2 and the tyrosinase.
Collapse
|
12
|
Fu L, Pei D, Yu M, Li LY, Jia HM, Zhang HW, Shang H, Yu SS, Zhang T, Zou ZM. New caffeoyl derivatives from Elephantopus scaber. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:713-721. [PMID: 34647509 DOI: 10.1080/10286020.2021.1974005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Three new caffeoyl derivatives (1-3), together with two known ones (4-5), were isolated from the whole plant of Elephantopus scaber Linn. The structures of the new compounds were elucidated using detailed spectroscopic analysis. Compound 4 was obtained and its NMR data were given for the first time. All isolates were evaluated for their anti-inflammatory activity against lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production and pro-inflammatory cytokines release in RAW 264.7 cells. Compounds 2-5 showed mild inhibitory activities with IC50 values ranging from 64.78 to 87.21 μM, and 3-4 could inhibit LPS-induced tumor necrosis factor-α (TNF-α) production.
Collapse
Affiliation(s)
- Lu Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Di Pei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ling-Yu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hong-Mei Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hong-Wu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hai Shang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Shi-Shan Yu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100150, China
| | - Tao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
13
|
Xu W, Bai M, Liu DF, Qin SY, Lv TM, Li Q, Lin B, Song SJ, Huang XX. MS/MS-based molecular networking accelerated discovery of germacrane-type sesquiterpene lactones from Elephantopus scaber L. PHYTOCHEMISTRY 2022; 198:113136. [PMID: 35231501 DOI: 10.1016/j.phytochem.2022.113136] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Assisted by an MS/MS-based molecular networking guided strategy, six undescribed germacrane-type sesquiterpene lactones, namely scaberxones A-F, along with a known analog were obtained and characterized from Elephantopus scaber L. Their structures were unequivocally assigned by detailed spectroscopic analyses, NMR and ECD spectral calculations, and computer-assisted structure elucidation (CASE), complemented with single-crystal X-ray diffraction. All compounds were measured for their production of nitric oxide (NO) levels in lipopolysaccharide (LPS)-induced BV-2 microglial cells to assess their anti-neuroinflammatory activity. Scaberxone F showed the most potent inhibition of NO production at a concentration of 10 μM.
Collapse
Affiliation(s)
- Wei Xu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - De-Feng Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Shu-Yan Qin
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Tian-Ming Lv
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Qian Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
14
|
Zhang YY, Ren H, Yan QL, Li YL, Liu Q, Yao GD, Song SJ. SCP-7, a germacrane-type sesquiterpene lactone derivative, induces ROS-mediated apoptosis in NSCLC cells in vitro and in vivo. Eur J Pharmacol 2022; 925:174989. [PMID: 35490722 DOI: 10.1016/j.ejphar.2022.174989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022]
Abstract
Scabertopin (SCP), an abundant germacrane-type sesquiterpene lactone (SLC) isolated from Elephantopus scaber, was selected as a reference compound for modification and evaluation as anticancer agents for non-small cell lung cancer (NSCLC) treatment. All derivatives (SCP-1-SCP-13) except for SCP-3 showed potential inhibitory effect (IC50 5.2-9.7 μM) against A549 cells. The most promising compound SCP-7 also showed good cytotoxic activity against another two NSCLC cell lines (H1299 and H460), with IC50 value of 4.4 and 8.9 μM, respectively. Furthermore, SCP-7 could induce apoptotic cell death that was associated with the increased reactive oxygen species (ROS) generation, the loss of mitochondrial membrane potential, Bcl-2 family proteins modulation, caspases-3 and PARP cleavage. In addition, SCP-7 also inhibited cell growth by increasing Bax expression and reducing the Ki-67 positive cells in vivo, but there were no obvious toxic and side effects on internal organs. Mechanistically, PharmMapper, molecular docking and Western blot analysis revealed that SCP-7 might interact with the epidermal growth factor receptor (EGFR) and inhibit its expression in lung cancer cells. Together, above results suggest further effective application of SCP-7 as a potential anti-tumor agent in the treatment of NSCLC.
Collapse
Affiliation(s)
- Yang-Yang Zhang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Hui Ren
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Qiu-Lin Yan
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Ya-Ling Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
15
|
Small Molecule Accurate Recognition Technology accelerated isolation of structurally diverse sesquiterpenes from Litsea lancilimba Merr. Fitoterapia 2022; 158:105168. [DOI: 10.1016/j.fitote.2022.105168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
|
16
|
Ren H, Zhang YY, Li YL, Bai M, Yan QL, Huang XX, Cui W, Zhao H, Gu L, Liu Q, Yao GD, Song SJ. Semisynthesis and Non-Small-Cell Lung Cancer Cytotoxicity Evaluation of Germacrane-Type Sesquiterpene Lactones from Elephantopus scaber. JOURNAL OF NATURAL PRODUCTS 2022; 85:352-364. [PMID: 35090346 DOI: 10.1021/acs.jnatprod.1c00936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two series of germacrane-type sesquiterpene lactones were produced by semisynthetic modulation of scaberol C, which was prepared by a standard chemical transformation from an Elephantopus scaber extract. Their inhibition activities against non-small-cell lung cancer cells were screened, and preliminary structure-activity relationships were also established. Among them, monomeric analog 1u and dimeric analog 3d exhibited superior anti-non-small-cell lung cancer cytotoxic potencies with IC50 values of 4.3 and 0.7 μM against A549 cells, respectively, and were more active than cisplatin and the standard sesquiterpene lactones, parthenolide and scabertopin. Further studies revealed that compounds 1u and 3d cause G2/M phase arrest and induce apoptosis through the activation of mitochondrial pathways in A549 cells. Collectively, the results obtained suggest that compounds 1u and 3d are promising anti-non-small-cell lung cancer lead compounds.
Collapse
Affiliation(s)
- Hui Ren
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yang-Yang Zhang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ya-Ling Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ming Bai
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Qiu-Lin Yan
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Wei Cui
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hongwei Zhao
- Jilin Yizheng Pharmaceutical Group Co., Ltd., Siping 136001, Jilin Province, People's Republic of China
| | - Liwei Gu
- Institute of Chinese Materia Medica, Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Jilin Yizheng Pharmaceutical Group Co., Ltd., Siping 136001, Jilin Province, People's Republic of China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
17
|
Zhou L, Bai M, He QJ, Hou ZL, Lu LW, Wang J, Huang XX, Lin B, Song SJ. Nine new dihydro-β-agarofuran sesquiterpene polyesters from the leaves of Tripterygium wilfordii. NEW J CHEM 2022. [DOI: 10.1039/d1nj03800a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nine previously undescribed dihydro-β-agarofuran type sesquiterpene polyesters, tripteresters A–I (1–9) were isolated from the leaves of Tripterygium wilfordii.
Collapse
Affiliation(s)
- Le Zhou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing-Jun He
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zi-Lin Hou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li-Wei Lu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jie Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
18
|
Yang PY, Zhao P, Bai M, Yu XQ, Ren H, Liu QB, Lin B, Song SJ, Huang XX. Structure elucidation and absolute configuration determination of C 26, C 27 and C 30 tirucallane triterpenoids from the leaves of Picrasma quassioides (D. Don) Benn. PHYTOCHEMISTRY 2021; 184:112675. [PMID: 33548770 DOI: 10.1016/j.phytochem.2021.112675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/03/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Seven undescribed tirucallane-type triterpenoids, kumunorquassins A‒E and kumuquassins K and L, along with nine known analogues, have been isolated from the leaves of Picrasma quassioides (D. Don) Benn. Their structures and absolute configurations were elucidated based on comprehensive spectroscopic analyses, single-crystal X-ray diffraction analysis and electronic circular dichroism (ECD). The absolute configuration of cornusalterin J was unequivocally determined by X-ray diffraction based on its p-bromobenzoate derivative. A brief approach was presented in our study, which could rapidly and conveniently determine the relative and absolute configurations of OCH3-23 of kumuquassin L and cornusalterins J, H and G depending on the chemical shift differences (Δδ) of C-24 and C-25 and the chemical shifts of C-23, H-23 and H-24. In addition, the cytotoxicities of these compounds against two human tumour cell lines (HepG2 and Hep3B) were evaluated.
Collapse
Affiliation(s)
- Pei-Yuan Yang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Peng Zhao
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ming Bai
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao-Qi Yu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hui Ren
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qing-Bo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
19
|
Li SF, Yu XQ, Li YL, Bai M, Lin B, Yao GD, Song SJ. Vibsane-type diterpenoids from Viburnum odoratissimum and their cytotoxic activities. Bioorg Chem 2020; 106:104498. [PMID: 33272710 DOI: 10.1016/j.bioorg.2020.104498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 01/03/2023]
Abstract
Seven new diterpenoids (1-7), including five 7-membered ring vibsane-type diterpenoids, vibsanolide A-E (1-5) and a pair of epimers of 14,15,16,17-tetranorvibsane-type diterpenoids possessing bicyclo[4.2.1]nonane moiety, vibsanolide F-G (6-7), together with twelve known analogues (8-19) were isolated from the crude extracts of the leaves of Viburnum odoratissimum using Small Molecule Accurate Recognition Technology (SMART). These structures including absolute configurations were elucidated by means of comprehensive analyses of spectroscopic data, as well as comparison of the experimental and calculated electronic circular dichroism (ECD) spectra. These compounds were evaluated for their cytotoxic activities against A549 and HepG2 cells by MTT assay. The results showed that compound 2 exhibited potent cytotoxic activity against A549 cells with IC50 value of 1.11 μM. Further staining experiments indicated that 2 could promote apoptosis induction, enhance reactive oxygen species (ROS) level and attenuate mitochondrial membrane potential (MMP) in A549 cells. Taken together, these findings provided new insights into understanding the cytotoxic activity of vibsane-type diterpenoids and it is meaningful to further investigate the application potential of V. odoratissimum.
Collapse
Affiliation(s)
- Shi-Fang Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Qi Yu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ya-Ling Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ming Bai
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|