1
|
Hoboth P, Sztacho M, Hozák P. Nuclear patterns of phosphatidylinositol 4,5- and 3,4-bisphosphate revealed by super-resolution microscopy differ between the consecutive stages of RNA polymerase II transcription. FEBS J 2024; 291:4240-4264. [PMID: 38734927 DOI: 10.1111/febs.17136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/12/2023] [Accepted: 04/05/2024] [Indexed: 05/13/2024]
Abstract
Phosphatidylinositol phosphates are powerful signaling molecules that orchestrate signaling and direct membrane trafficking in the cytosol. Interestingly, phosphatidylinositol phosphates also localize within the membrane-less compartments of the cell nucleus, where they participate in the regulation of gene expression. Nevertheless, current models of gene expression, which include condensates of proteins and nucleic acids, do not include nuclear phosphatidylinositol phosphates. This gap is partly a result of the missing detailed analysis of the subnuclear distribution of phosphatidylinositol phosphates and their relationships with gene expression. Here, we used quantitative dual-color direct stochastic optical reconstruction microscopy to analyze the nanoscale co-patterning between RNA polymerase II transcription initiation and elongation markers with respect to phosphatidylinositol 4,5- or 3,4-bisphosphate in the nucleoplasm and nuclear speckles and compared it with randomized data and cells with inhibited transcription. We found specific co-patterning of the transcription initiation marker P-S5 with phosphatidylinositol 4,5-bisphosphate in the nucleoplasm and with phosphatidylinositol 3,4-bisphosphate at the periphery of nuclear speckles. We showed the specific accumulation of the transcription elongation marker PS-2 and of nascent RNA in the proximity of phosphatidylinositol 3,4-bisphosphate associated with nuclear speckles. Taken together, this shows that the distinct spatial associations between the consecutive stages of RNA polymerase II transcription and nuclear phosphatidylinositol phosphates exhibit specificity within the gene expression compartments. Thus, in analogy to the cellular membranes, where phospholipid composition orchestrates signaling pathways and directs membrane trafficking, we propose a model in which the phospholipid identity of gene expression compartments orchestrates RNA polymerase II transcription.
Collapse
Affiliation(s)
- Peter Hoboth
- Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Viničná Microscopy Core Facility, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Sztacho
- Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Laboratory of Cancer Cell Architecture, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Hozák
- Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Microscopy Centre, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Wen Y, Song Y, Ma Y, Wen J, Yang J. Sanguinarine targets BRD4 to suppress cell proliferation and migration in clear cell renal cell carcinoma. J Biochem Mol Toxicol 2023; 37:e23451. [PMID: 37393519 DOI: 10.1002/jbt.23451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/30/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
Sanguinarine is an alkaloid with diverse biological activities, nevertheless, whether it can target epigenetic modifiers remains unknown. In this study, sanguinarine was characterized as a strong BRD4 inhibitor with IC50 = 361.3 nM against BRD4 (BD1) and IC50 = 302.7 nM against BRD4 (BD2) that can inactivate BRD4 reversibly. Additional cellular assays suggested that sanguinarine can bind BRD4 in human clear cell renal cell carcinoma (ccRCC) cell line 786-O and inhibit cell growth with IC50 (24 h) = 0.6752 μM and IC50 (48 h) = 0.5959 μM in a BRD4 dependent manner partially. Meanwhile, sanguinarine can inhibit the migration of 786-O cells in vitro and in vivo, and reverse epithelial-mesenchymal transition. Moreover, it can inhibit 786-O cells proliferation in vivo in a BRD4 dependent manner partially. In sum, our study identified BRD4 as a new target of sanguinarine, and sanguinarine may serve as a potential therapeutic agent against ccRCC.
Collapse
Affiliation(s)
- Yibo Wen
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Urology, Urodynamic Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Science of Zhengzhou University, Zhengzhou, China
| | - Yue Song
- The Academy of Medical Science of Zhengzhou University, Zhengzhou, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Ma
- Department of Urology, Urodynamic Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Science of Zhengzhou University, Zhengzhou, China
| | - Jianguo Wen
- Department of Urology, Urodynamic Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinghua Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Science of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Chen R, Wang H, Zheng C, Zhang X, Li L, Wang S, Chen H, Duan J, Zhou X, Peng H, Guo J, Zhang A, Li F, Wang W, Zhang Y, Wang J, Wang C, Meng Y, Du X, Zhang H. Polo-like kinase 1 promotes pulmonary hypertension. Respir Res 2023; 24:204. [PMID: 37598171 PMCID: PMC10440037 DOI: 10.1186/s12931-023-02498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/22/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a lethal vascular disease with limited therapeutic options. The mechanistic connections between alveolar hypoxia and PH are not well understood. The aim of this study was to investigate the role of mitotic regulator Polo-like kinase 1 (PLK1) in PH development. METHODS Mouse lungs along with human pulmonary arterial smooth muscle cells and endothelial cells were used to investigate the effects of hypoxia on PLK1. Hypoxia- or Sugen5416/hypoxia was applied to induce PH in mice. Plk1 heterozygous knockout mice and PLK1 inhibitors (BI 2536 and BI 6727)-treated mice were checked for the significance of PLK1 in the development of PH. RESULTS Hypoxia stimulated PLK1 expression through induction of HIF1α and RELA. Mice with heterozygous deletion of Plk1 were partially resistant to hypoxia-induced PH. PLK1 inhibitors ameliorated PH in mice. CONCLUSIONS Augmented PLK1 is essential for the development of PH and is a druggable target for PH.
Collapse
Affiliation(s)
- Rongrong Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hongfei Wang
- Department of Cardiac Surgery, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuiting Zheng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Xiyu Zhang
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Li Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shengwei Wang
- Department of Cardiac Surgery, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyu Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Duan
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xian Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Haiyong Peng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Guo
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Anchen Zhang
- Department of Cardiac Surgery, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feifei Li
- Department of Cardiac Surgery, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wang Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Chen Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Meng
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China.
| | - Xinling Du
- Department of Cardiac Surgery, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongbing Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Chen R, Hassankhani R, Long Y, Basnet SKC, Teo T, Yang Y, Mekonnen L, Yu M, Wang S. Discovery of Potent Inhibitors of Cyclin-Dependent Kinases 7 and 9: Design, Synthesis, Structure-Activity Relationship Analysis and Biological Evaluation. ChemMedChem 2023; 18:e202200582. [PMID: 36400715 DOI: 10.1002/cmdc.202200582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Cyclin-dependent kinases (CDKs) 7 and 9 are deregulated in various types of human cancer and are thus viewed as therapeutic targets. Accordingly, small-molecule inhibitors of both CDKs are highly sought-after. Capitalising on our previous discovery of CDKI-73, a potent CDK9 inhibitor, medicinal chemistry optimisation was pursued. A number of N-pyridinylpyrimidin-2-amines were rationally designed, chemically synthesised and biologically assessed. Among them, N-(6-(4-cyclopentylpiperazin-1-yl)pyridin-3-yl)-4-(imidazo[1,2-a]pyrimidin-3-yl)pyrimidin-2-amine was found to be one of the most potent inhibitors of CDKs 7 and 9 as well as the most effective anti-proliferative agent towards multiple human cancer cell lines. The cellular mode of action of this compound was investigated in MV4-11 acute myeloid leukaemia cells, revealing that the compound dampened the kinase activity of cellular CDKs 7 and 9, arrested the cell cycle at sub-G1 phase and induced apoptosis.
Collapse
Affiliation(s)
- Renjie Chen
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Ramin Hassankhani
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Yi Long
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sunita K C Basnet
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Theodosia Teo
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Yuchao Yang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Laychiluh Mekonnen
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Mingfeng Yu
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| |
Collapse
|
5
|
Li YF, Wang YX, Wang H, Ma Y, Wang LS. Posttranslational Modifications: Emerging Prospects for Cardiac Regeneration Therapy. J Cardiovasc Transl Res 2021; 15:49-60. [PMID: 34031843 DOI: 10.1007/s12265-021-10135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/07/2021] [Indexed: 11/30/2022]
Abstract
Heart failure (HF) following ischemic heart disease (IHD) remains a hard nut to crack and a leading cause of death worldwide. Cardiac regeneration aims to promote cardiomyocyte (CM) proliferation by transitioning the cell cycle state of CMs from arrest to re-entry. Protein posttranslational modifications (PTMs) have recently attracted extensive attention in the field of cardiac regeneration due to their reversibility and effects on the stability, activity, and subcellular localization of target proteins. The balance of PTMs is disrupted when neonatal CMs withdraw from the cell cycle, resulting in significant dysfunction of downstream substrate protein localization, expression, and activity, ultimately limiting the maintenance of cardiac regeneration ability. In this review, we summarize recent research concerning the role of PTMs in cardiac regeneration, while focusing on phosphorylation, acetylation, ubiquitination, glycosylation, methylation, and neddylation, and the effects of these modifications on CM proliferation, which may provide potential targets for future treatments for IHD.
Collapse
Affiliation(s)
- Ya-Fei Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ya-Xin Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yao Ma
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lian-Sheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
6
|
Kargbo RB. Tumor-Targeted Bivalent Protein Degradation for Application in Cancer Therapy. ACS Med Chem Lett 2021; 12:326-327. [PMID: 33738055 DOI: 10.1021/acsmedchemlett.1c00084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Robert B. Kargbo
- Usona Institute, 277 Granada Drive, San Luis Obispo, California 93401-7337, United States
| |
Collapse
|