1
|
Ghoneim MM, Abdelgawad MA, Elkanzi NAA, Bakr RB. Review of the recent advances of pyrazole derivatives as selective COX-2 inhibitors for treating inflammation. Mol Divers 2024:10.1007/s11030-024-10906-9. [PMID: 39014146 DOI: 10.1007/s11030-024-10906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/30/2024] [Indexed: 07/18/2024]
Abstract
Pyrazole heterocycle is regarded as an extremely significant agent for the therapy of inflammation. Celecoxib, lonazolac, deracoxib, and phenylbutazone are examples of commercially approved pyrazole drugs with COX-2 inhibitory potential for curing inflammation. There have been recently many reviews for the biological significance of pyrazole derivatives. This review talks about pyrazole derivatives with anti-inflammatory activity and also sheds the light on the recent updates on pyrazole research with an emphasis on some synthetic pathways utilized to construct this privileged scaffold and structure activity relationship that accounts for the anti-inflammatory activity in an attempt to pave the opportunity for medicinal chemists to develop novel anti-inflammatory agents with better COX-2 selectivity.
Collapse
Affiliation(s)
- Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, 72388, Saudi Arabia.
| | - Nadia A A Elkanzi
- Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Rania B Bakr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt.
| |
Collapse
|
2
|
Fadaly WAA, Elshaier YAMM, Ali FEM, El-Bahrawy AH, Abdellatif KRA, Nemr MTM. Vicinal diaryl pyrazole with tetrazole/urea scaffolds as selective angiotensin converting enzyme-1/cyclooxygenase-2 inhibitors: Design, synthesis, anti-hypertensive, anti-fibrotic, and anti-inflammatory. Drug Dev Res 2024; 85:e22217. [PMID: 38845214 DOI: 10.1002/ddr.22217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/05/2024] [Accepted: 05/18/2024] [Indexed: 06/15/2024]
Abstract
As a hybrid weapon, two novel series of pyrazoles, 16a-f and 17a-f, targeting both COX-2 and ACE-1-N-domain, were created and their anti-inflammatory, anti-hypertensive, and anti-fibrotic properties were evaluated. In vitro, 17b and 17f showed COX-2 selectivity (SI = 534.22 and 491.90, respectively) compared to celecoxib (SI = 326.66) and NF-κB (IC50 1.87 and 2.03 μM, respectively). 17b (IC50 0.078 μM) and 17 f (IC50 0.094 μM) inhibited ACE-1 comparable to perindopril (PER) (IC50 0.048 μM). In vivo, 17b decreased systolic blood pressure by 18.6%, 17b and 17f increased serum NO levels by 345.8%, and 183.2%, respectively, increased eNOS expression by 0.97 and 0.52 folds, respectively and reduced NF-κB-p65 and P38-MAPK expression by -0.62, -0.22, -0.53, and -0.24 folds, respectively compared to l-NAME (-0.34, -0.45 folds decline in NF-κB-p65 and P38-MAPK, respectively). 17b reduced ANG-II expression which significantly reversed the cardiac histological changes induced by L-NAME.
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Yaseen A M M Elshaier
- Organic & Medicinal Chemistry Department, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Ali H El-Bahrawy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Khaled R A Abdellatif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Pharmaceutical Sciences Department, Ibn Sina National College for Medical Studies, Jeddah, Kingdom of Saudi Arabia
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Fadaly WAA, Nemr MTM, Kahk NM. Discovery of novel pyrazole based Urea/Thiourea derivatives as multiple targeting VEGFR-2, EGFR WT, EGFR T790M tyrosine kinases and COX-2 Inhibitors, with anti-cancer and anti-inflammatory activities. Bioorg Chem 2024; 147:107403. [PMID: 38691909 DOI: 10.1016/j.bioorg.2024.107403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
A novel series of pyrazole derivatives with urea/thiourea scaffolds 16a-l as hybrid sorafenib/erlotinib/celecoxib analogs was designed, synthesized and tested for its VEGFR-2, EGFRWT, EGFRT790M tyrosine kinases and COX-2, pro-inflammatory cytokines TNF-α and IL-6 inhibitory activities. All the tested compounds showed excellent COX-2 selectivity index in range of 18.04-47.87 compared to celecoxib (S.I. = 26.17) and TNF-α and IL-6 inhibitory activities (IC50 = 5.0-7.50, 6.23-8.93 respectively, compared to celecoxib IC50 = 8.40 and 8.50, respectively). Screening was carried out against 60 human cancer cell lines by National Cancer Institute (NCI), compounds 16a, 16c, 16d and 16 g were the most potent inhibitors with GI% ranges of 100 %, 99.63-87.02 %, 98.98-43.10 % and 98.68-23.62 % respectively, and with GI50 values of 1.76-15.50 µM, 1.60-5.38 µM, 1.68-7.39 µM and 1.81-11.0 µM respectively, in addition, of showing good safety profile against normal cell line (F180). Moreover, compounds 16a, 16c, 16d and 16 g had cell cycle arrest at G2/M phase with induced necrotic percentage compared to sorafenib of 2.06 %, 2.47 %, 1.57 %, 0.88 % and 1.83 % respectively. Amusingly, compounds 16a, 16c, 16d and 16 g inhibited VEGFR-2 with IC50 of 25 nM, 52 nM, 324 nM and 110 nM respectively, compared to sorafenib (IC50 = 85 nM), and had excellent EGFRWT and EGFRT790M kinase inhibitory activities (IC50 = 94 nM, 128 nM, 160 nM, 297 nM), (10 nM, 25 nM, 36 nM and 48 nM) respectively, compared to both erlotinib and osimertinib (IC50 = 114 nM, 56 nM) and (70 nM, 37 nM) respectively and showed (EGFRwt/EGFRT790M S.I.) of (range: 4.44-9.40) compared to erlotinib (2.03) and osmertinib (1.89).
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini street 11562, Cairo, Egypt.
| | - Nesma M Kahk
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
4
|
Rayan SA, George RF, Mohamed NM, Said MF. Exploring of novel oxazolones and imidazolones as anti-inflammatory and analgesic candidates with cyclooxygenase inhibitory action. Future Med Chem 2024; 16:963-981. [PMID: 38639393 PMCID: PMC11221545 DOI: 10.4155/fmc-2023-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/06/2024] [Indexed: 04/20/2024] Open
Abstract
Aim: Over the last few decades, therapeutic needs have led to a search for safer COX-2 inhibitors with potential anti-inflammatory and analgesic activity. Materials & methods: A new series of oxazolone and imidazolone derivatives 3a-c and 4a-r were synthesized and evaluated as anti-inflammatory and analgesic agents. COX-1/COX-2 isozyme selectivity testing and molecular docking were performed. Results: All compounds showed good activities comparable to those of the reference, celecoxib. The most active compounds 3a, 4a, 4c, 4e and 4f showed promising gastric tolerability with an ulcer index lower than that of celecoxib. The molecular docking of p-methoxyphenyl derivative 4c showed alkyl interaction with the side pocket His75 of COX-2 and achieved the best anti-inflammatory activity, with a COX-2 selectivity index better than that of celecoxib.
Collapse
Affiliation(s)
- Seham A Rayan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt, Kasr El-Aini Street, Cairo, PO Box 11562, Egypt
| | - Riham F George
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt, Kasr El-Aini Street, Cairo, PO Box 11562, Egypt
| | - Nada M Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology & Information MTI, Cairo, 11585, Egypt
| | - Mona F Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt, Kasr El-Aini Street, Cairo, PO Box 11562, Egypt
| |
Collapse
|
5
|
Fadaly WAA, Zidan TH, Kahk NM, Mohamed FEA, Abdelhakeem MM, Khalil RG, Nemr MTM. New pyrazolyl-thiazolidinone/thiazole derivatives as celecoxib/dasatinib analogues with selective COX-2, HER-2 and EGFR inhibitory effects: design, synthesis, anti-inflammatory/anti-proliferative activities, apoptosis, molecular modelling and ADME studies. J Enzyme Inhib Med Chem 2023; 38:2281262. [PMID: 38010912 PMCID: PMC11003491 DOI: 10.1080/14756366.2023.2281262] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Abstract
Two new series of pyrazolyl-thiazolidinone/thiazole derivatives 16a-b and 18a-j were synthesised, merging the scaffolds of celecoxib and dasatinib. Compounds 16a, 16b and 18f inhibit COX-2 with S.I. 134.6, 26.08 and 42.13 respectively (celecoxib S.I. = 24.09). Compounds 16a, 16b, 18c, 18d and 18f inhibit MCF-7 with IC50 = 0.73-6.25 μM (dasatinib IC50 = 7.99 μM) and (doxorubicin IC50 = 3.1 μM) and inhibit A549 with IC50 = 1.64-14.3 μM (dasatinib IC50 = 11.8 μM and doxorubicin IC50 = 2.42 μM) with S.I. (F180/MCF7) of 33.15, 7.13, 18.72, 13.25 and 8.28 respectively higher than dasatinib (4.03) and doxorubicin (3.02) and S.I. (F180/A549) of 14.75, 12.96, 4.16, 7.07 and 18.88 respectively higher than that of dasatinib (S.I. = 2.72) and doxorubicin (S.I = 3.88). Derivatives 16a, 18c, 18d, 18f inhibit EGFR and HER-2 IC50 for EGFR of 0.043, 0.226, 0.388, 0.19 μM respectively and for HER-2 of 0.032, 0.144, 0.195, 0.201 μM respectively.
Collapse
Affiliation(s)
- Wael A. A. Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Taha H. Zidan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M. Kahk
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma E. A. Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M. Abdelhakeem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab G. Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed T. M. Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Basha NJ. Small Molecules as Anti‐inflammatory Agents: Molecular Mechanisms and Heterocycles as Inhibitors of Signaling Pathways. ChemistrySelect 2023. [DOI: 10.1002/slct.202204723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- N. Jeelan Basha
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru Karnataka-560043 India
| |
Collapse
|
7
|
Chen W, Xu Q, Ma X, Mo J, Lin G, He G, Chu Z, Li J. Synthesis and biological evaluation of N-(benzene sulfonyl)acetamide derivatives as anti-inflammatory and analgesic agents with COX-2/5-LOX/TRPV1 multifunctional inhibitory activity. Bioorg Med Chem Lett 2023; 80:129101. [PMID: 36481449 DOI: 10.1016/j.bmcl.2022.129101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
In this study, a series of structurally novel N-(benzene sulfonyl) acetamide derivatives were designed, synthesized, and biologically evaluated as COX-2/5-LOX/TRPV1 multitarget inhibitors for anti-inflammatory and analgesic therapy. Among them, 9a and 9b displayed favorable COX-2 (9a IC50 = 0.011 μM, 9b IC50 = 0.023 μM), 5-LOX (9a IC50 = 0.046 μM, 9b IC50 = 0.31 μM) and TRPV1 (9a IC50 = 0.008 μM, 9b IC50 = 0.14 μM) inhibitory activities. The pharmacokinetic (PK) study of 9a in SD rats at the dosage of 10 mg/kg demonstrated a high oral exposure, an acceptable clearance and a favorable bioavailability (Cmax = 5807.18 ± 2657.83 ng/mL, CL = 3.24 ± 1.47 mL/min/kg, F = 96.8 %). Further in vivo efficacy studies illustrated that 9a was capable of ameliorating formalin-induced pain and inhibiting capsaicin-induced ear edema.
Collapse
Affiliation(s)
- Wenli Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Hefei Industrial Pharmaceutical Institute Co., Ltd., Hefei, Anhui 230061, China
| | - Qinlong Xu
- Hefei Industrial Pharmaceutical Institute Co., Ltd., Hefei, Anhui 230061, China
| | - Xiaodong Ma
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiajia Mo
- Hefei Industrial Pharmaceutical Institute Co., Ltd., Hefei, Anhui 230061, China
| | - Gaofeng Lin
- Hefei Industrial Pharmaceutical Institute Co., Ltd., Hefei, Anhui 230061, China
| | - Guangwei He
- Hefei Industrial Pharmaceutical Institute Co., Ltd., Hefei, Anhui 230061, China
| | - Zhaoxing Chu
- Hefei Industrial Pharmaceutical Institute Co., Ltd., Hefei, Anhui 230061, China.
| | - Jiaming Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
8
|
Novel thiadiazol derivatives; design, synthesis, biological activity, molecular docking and molecular dynamics. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Ren G, Zhang Q, Xia P, Wang J, Fang P, Jin X, Peng X, Xu Y, Zhang J, Zhao L. Synthesis and Biological Evaluation of Gentiopicroside Derivatives as Novel Cyclooxygenase-2 Inhibitors with Anti-Inflammatory Activity. Drug Des Devel Ther 2023; 17:919-935. [PMID: 36992901 PMCID: PMC10042259 DOI: 10.2147/dddt.s398861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Purpose Nonsteroidal anti-inflammatory drugs cause a series of adverse reactions. Thus, the search for new cyclooxygenase-2 selective inhibitors have become the main direction of research on anti-inflammatory drugs. Gentiopicroside is a novel selective inhibitor of cyclooxygenase-2 from Chinese herbal medicine. However, it is highly hydrophilic owing to the presence of the sugar fragment in its structure that reduces its oral bioavailability and limits efficacy. This study aimed to design and synthesize novel cyclooxygenase-2 inhibitors by modifying gentiopicroside structure and reducing its polarity. Materials and Methods We introduced hydrophobic acyl chloride into the gentiopicroside structure to reduce its hydrophilicity and obtained some new derivatives. Their in vitro anti-inflammatory activities were evaluated against NO, TNF-α, PGE2, and IL-6 production in the mouse macrophage cell line RAW264.7 stimulated by lipopolysaccharide. The in vivo inhibitory activities were further tested against xylene-induced mouse ear swelling. Molecular docking predicted that whether new compounds could effectively bind to target protein cyclooxygenase-2. The inhibitory activity of new compounds to cyclooxygenase-2 enzyme were verified by the in vitro experiment. Results A total of 21 novel derivatives were synthesized, and exhibit lower polarities than the gentiopicroside. Most compounds have good in vitro anti-inflammatory activity. The in vivo activity results demonstrated that 8 compounds were more active than gentiopicroside. The inhibition rate of some compounds was higher than celecoxib. Molecular docking predicted that 6 compounds could bind to cyclooxygenase-2 and had high docking scores in accordance with their potency of the anti-inflammatory activity. The confirmatory experiment proved that these 6 compounds had significant inhibitory effect against cyclooxygenase-2 enzyme. Structure-activity relationship analysis presumed that the para-substitution with the electron-withdrawing groups may benefit the anti-inflammatory activity. Conclusion These gentiopicroside derivatives especially PL-2, PL-7 and PL-8 may represent a novel class of cyclooxygenase-2 inhibitors and could thus be developed as new anti-inflammatory agents.
Collapse
Affiliation(s)
- Guojin Ren
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Qili Zhang
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, 730000, People’s Republic of China
| | - Pengfei Xia
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, 730000, People’s Republic of China
- Key Laboratory of Chemistry and Quality of TCM of the College of Gansu Province, Lanzhou, 730000, People’s Republic of China
- Gansu Province Engineering Laboratory for TCM Standardization Technology and Popularization, Lanzhou, 730000, People’s Republic of China
| | - Jie Wang
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Pengxia Fang
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Xiaojie Jin
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Xuejing Peng
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, 730000, People’s Republic of China
- Key Laboratory of Chemistry and Quality of TCM of the College of Gansu Province, Lanzhou, 730000, People’s Republic of China
- Gansu Province Engineering Laboratory for TCM Standardization Technology and Popularization, Lanzhou, 730000, People’s Republic of China
| | - Yanli Xu
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Lanzhou Institute for Food and Drug Control, Lanzhou, 730000, People’s Republic of China
| | - Jian Zhang
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, 730000, People’s Republic of China
- Key Laboratory of Chemistry and Quality of TCM of the College of Gansu Province, Lanzhou, 730000, People’s Republic of China
- Gansu Province Engineering Laboratory for TCM Standardization Technology and Popularization, Lanzhou, 730000, People’s Republic of China
| | - Lei Zhao
- Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, 730000, People’s Republic of China
- Key Laboratory of Chemistry and Quality of TCM of the College of Gansu Province, Lanzhou, 730000, People’s Republic of China
- Gansu Province Engineering Laboratory for TCM Standardization Technology and Popularization, Lanzhou, 730000, People’s Republic of China
- Lanzhou Institute for Food and Drug Control, Lanzhou, 730000, People’s Republic of China
- Correspondence: Lei Zhao; Jian Zhang, Email ;
| |
Collapse
|
10
|
Shaker AM, Shahin MI, AboulMagd AM, Abdel Aleem SA, Abdel-Rahman HM, Abou El Ella DA. Novel 1,3-diaryl pyrazole derivatives bearing methylsulfonyl moiety: Design, synthesis, molecular docking and dynamics, with dual activities as anti-inflammatory and anticancer agents through selectively targeting COX-2. Bioorg Chem 2022; 129:106143. [DOI: 10.1016/j.bioorg.2022.106143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 12/20/2022]
|
11
|
Ahmadi M, Bekeschus S, Weltmann KD, von Woedtke T, Wende K. Non-steroidal anti-inflammatory drugs: recent advances in the use of synthetic COX-2 inhibitors. RSC Med Chem 2022; 13:471-496. [PMID: 35685617 PMCID: PMC9132194 DOI: 10.1039/d1md00280e] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclooxygenase (COX) enzymes comprise COX-1 and COX-2 isoforms and are responsible for prostaglandin production. Prostaglandins have critical roles in the inflammation pathway and must be controlled by administration of selective nonsteroidal anti-inflammatory drugs (NSAIDs). Selective COX-2 inhibitors have been among the most used NSAIDs during the ongoing coronavirus 2019 pandemic because they reduce pain and protect against inflammation-related diseases. In this framework, the mechanism of action of both COX isoforms (particularly COX-2) as inflammation mediators must be reviewed. Moreover, proinflammatory cytokines such as tumor necrosis factor-α and interleukin (IL)-6, IL-1β, and IL-8 must be highlighted due to their major participation in upregulation of the inflammatory reaction. Structural and functional analyses of selective COX-2 inhibitors within the active-site cavity of COXs could enable introduction of lead structures with higher selectivity and potency against inflammation with fewer adverse effects. This review focuses on the biological activity of recently discovered synthetic COX-2, dual COX-2/lipoxygenase, and COX-2/soluble epoxide hydrolase hybrid inhibitors based primarily on the active motifs of related US Food and Drug Administration-approved drugs. These new agents could provide several advantages with regard to anti-inflammatory activity, gastrointestinal protection, and a safer profile compared with those of the NSAIDs celecoxib, valdecoxib, and rofecoxib.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- University Medicine Greifswald, Institute for Hygiene and Environmental Medicine Walther-Rathenau-Straße 49A 17489 Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| |
Collapse
|
12
|
Priya D, Gopinath P, Dhivya LS, Vijaybabu A, Haritha M, Palaniappan S, Kathiravan MK. Structural Insights into Pyrazoles as Agents against Anti‐inflammatory and Related Disorders. ChemistrySelect 2022. [DOI: 10.1002/slct.202104429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Deivasigamani Priya
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | | | - Anandan Vijaybabu
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | - Manoharan Haritha
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | - Muthu K. Kathiravan
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
- Dr APJ Abdul Kalam Research Lab Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| |
Collapse
|
13
|
Queiroz JE, Dias LD, Verde GMV, Aquino GLB, Camargo AJ. An Update on the synthesis and pharmacological properties of pyrazoles obtained from Chalcone. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220119110347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
A review concerning the synthesis and pharmacological properties of pyrazoles obtained from Chalcone described in the literature over the last 5 years (2016-2020) was presented and discussed. Among the synthetic approaches for pyrazoles described so far, the cyclization and acetylation method of α,β-unsaturated chalcones and substituted hydrazine was selected and analyzed. 105 pyrazole derivatives (3-107) were evaluated as well as their pharmacological activities, namely, antineoplastic, anti-inflammatory, antioxidant, antibacterial, antifungal, antimycobacterial, antiplasmodial, Alzheimer's disease, enzymes inhibition (like acetylcholinesterase, carbonic anhydrase, and malonyl CoA decarboxylase), anticonvulsant, among others. Pyrazolic compounds are widely used in the new drugs design with a wide spectrum of pharmacological approaches, therefore, it is relevant to research the synthetic methods and therapeutic properties of different pyrazole derivatives.
Collapse
Affiliation(s)
- Jaqueline E Queiroz
- Laboratório de pesquisa em Bioprodutos e Síntese, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| | - Lucas D Dias
- São Carlos Institute of Physics, University of São Paulo, São Carlos-SP, Brazil
| | - Giuliana M Vila Verde
- Laboratório de pesquisa em Bioprodutos e Síntese, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| | - Gilberto LB Aquino
- Laboratório de pesquisa em Bioprodutos e Síntese, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| | - Ademir J Camargo
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| |
Collapse
|
14
|
Recent development on COX-2 inhibitors as promising anti-inflammatory agents: The past 10 years. Acta Pharm Sin B 2022; 12:2790-2807. [PMID: 35755295 PMCID: PMC9214066 DOI: 10.1016/j.apsb.2022.01.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cyclooxygenases play a vital role in inflammation and are responsible for the production of prostaglandins. Two cyclooxygenases are described, the constitutive cyclooxygenase-1 and the inducible cyclooxygenase-2, for which the target inhibitors are the non-steroidal anti-inflammatory drugs (NSAIDs). Prostaglandins are a class of lipid compounds that mediate acute and chronic inflammation. NSAIDs are the most frequent choices for treatment of inflammation. Nevertheless, currently used anti-inflammatory drugs have become associated with a variety of adverse effects which lead to diminished output even market withdrawal. Recently, more studies have been carried out on searching novel selective COX-2 inhibitors with safety profiles. In this review, we highlight the various structural classes of organic and natural scaffolds with efficient COX-2 inhibitory activity reported during 2011–2021. It will be valuable for pharmaceutical scientists to read up on the current chemicals to pave the way for subsequent research.
Collapse
|
15
|
Bian M, Ma QQ, Wu Y, Du HH, Guo-Hua G. Small molecule compounds with good anti-inflammatory activity reported in the literature from 01/2009 to 05/2021: a review. J Enzyme Inhib Med Chem 2021; 36:2139-2159. [PMID: 34628990 PMCID: PMC8516162 DOI: 10.1080/14756366.2021.1984903] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inflammation and disease are closely related. Inflammation can induce various diseases, and diseases can promote inflammatory response, and two possibly induces each other in a bidirectional loop. Inflammation is usually treated using synthetic anti-inflammatory drugs which are associated with several adverse effects hence are not safe for long-term use. Therefore, there is need for anti-inflammatory drugs which are not only effective but also safe. Several researchers have devoted to the research and development of effective anti-inflammatory drugs with little or no side effects. In this review, we studied some small molecules with reported anti-inflammatory activities and hence potential sources of anti-inflammatory agents. The information was retrieved from relevant studies published between January 2019 and May, 2021 for review. This review study was aimed to provide relevant information towards the design and development of effective and safe anti-inflammation agents.
Collapse
Affiliation(s)
- Ming Bian
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Qian-Qian Ma
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Yun Wu
- First Clinical Medical of Inner, Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Huan-Huan Du
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Gong Guo-Hua
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China.,First Clinical Medical of Inner, Mongolia Minzu University, Tongliao, Inner Mongolia, China
| |
Collapse
|