1
|
Canales CSC, Pavan AR, Dos Santos JL, Pavan FR. In silico drug design strategies for discovering novel tuberculosis therapeutics. Expert Opin Drug Discov 2024; 19:471-491. [PMID: 38374606 DOI: 10.1080/17460441.2024.2319042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Tuberculosis remains a significant concern in global public health due to its intricate biology and propensity for developing antibiotic resistance. Discovering new drugs is a protracted and expensive endeavor, often spanning over a decade and incurring costs in the billions. However, computer-aided drug design (CADD) has surfaced as a nimbler and more cost-effective alternative. CADD tools enable us to decipher the interactions between therapeutic targets and novel drugs, making them invaluable in the quest for new tuberculosis treatments. AREAS COVERED In this review, the authors explore recent advancements in tuberculosis drug discovery enabled by in silico tools. The main objectives of this review article are to highlight emerging drug candidates identified through in silico methods and to provide an update on the therapeutic targets associated with Mycobacterium tuberculosis. EXPERT OPINION These in silico methods have not only streamlined the drug discovery process but also opened up new horizons for finding novel drug candidates and repositioning existing ones. The continued advancements in these fields hold great promise for more efficient, ethical, and successful drug development in the future.
Collapse
Affiliation(s)
- Christian S Carnero Canales
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
- School of Pharmacy, biochemistry and biotechnology, Santa Maria Catholic University, Arequipa, Perú
| | - Aline Renata Pavan
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Fernando Rogério Pavan
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
2
|
Sulyman AO, Fulcher J, Crossley S, Fatokun AA, Olorunniji FJ. Shikonin and Juglone Inhibit Mycobacterium tuberculosis Low-Molecular-Weight Protein Tyrosine Phosphatase a (Mt-PTPa). BIOTECH 2023; 12:59. [PMID: 37754203 PMCID: PMC10526854 DOI: 10.3390/biotech12030059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Low-molecular-weight protein tyrosine phosphatases (LMW-PTPs) are involved in promoting the intracellular survival of Mycobacterium tuberculosis (Mtb), the causative organism of tuberculosis. These PTPs directly alter host signalling pathways to evade the hostile environment of macrophages and avoid host clearance. Among these, protein tyrosine phosphatase A (Mt-PTPa) is implicated in phagosome acidification failure, thereby inhibiting phagosome maturation to promote Mycobacterium tuberculosis (Mtb) survival. In this study, we explored Mt-PTPa as a potential drug target for treating Mtb. We started by screening a library of 502 pure natural compounds against the activities of Mt-PTPa in vitro, with a threshold of 50% inhibition of activity via a <500 µM concentration of the candidate drugs. The initial screen identified epigallocatechin, myricetin, rosmarinic acid, and shikonin as hits. Among these, the naphthoquinone, shikonin (5, 8-dihydroxy-2-[(1R)-1-hydroxy-4-methyl-3-pentenyl]-1,4-naphthoquinone), showed the strongest inhibition (IC50 33 µM). Further tests showed that juglone (5-hydroxy-1,4-naphthalenedione), another naphthoquinone, displayed similar potent inhibition of Mt-PTPa to shikonin. Kinetic analysis of the inhibition patterns suggests a non-competitive inhibition mechanism for both compounds, with inhibitor constants (Ki) of 8.5 µM and 12.5 µM for shikonin and juglone, respectively. Our findings are consistent with earlier studies suggesting that Mt-PTPa is susceptible to specific allosteric modulation via a non-competitive or mixed inhibition mechanism.
Collapse
Affiliation(s)
- Abdulhakeem O. Sulyman
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete 241103, Nigeria
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Jessie Fulcher
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Samuel Crossley
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Amos A. Fatokun
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Femi J. Olorunniji
- School of Pharmacy & Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
3
|
Nicoletti R, Bellavita R, Falanga A. The Outstanding Chemodiversity of Marine-Derived Talaromyces. Biomolecules 2023; 13:1021. [PMID: 37509057 PMCID: PMC10377321 DOI: 10.3390/biom13071021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Fungi in the genus Talaromyces occur in every environment in both terrestrial and marine contexts, where they have been quite frequently found in association with plants and animals. The relationships of symbiotic fungi with their hosts are often mediated by bioactive secondary metabolites, and Talaromyces species represent a prolific source of these compounds. This review highlights the biosynthetic potential of marine-derived Talaromyces strains, using accounts from the literature published since 2016. Over 500 secondary metabolites were extracted from axenic cultures of these isolates and about 45% of them were identified as new products, representing a various assortment of chemical classes such as alkaloids, meroterpenoids, isocoumarins, anthraquinones, xanthones, phenalenones, benzofurans, azaphilones, and other polyketides. This impressive chemodiversity and the broad range of biological properties that have been disclosed in preliminary assays qualify these fungi as a valuable source of products to be exploited for manifold biotechnological applications.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Rosa Bellavita
- Department of Pharmacy, University of Naples Federico II, 80100 Napoli, Italy
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
4
|
Wu Z, Guo H, Wu Q, Jiang M, Chen J, Chen B, Li H, Liu L, Chen S. Absolute configuration of cyclopropanes and the structural revision of pyrones from Marine-derived fungus Stagonospora sp. SYSU-MS7888. Bioorg Chem 2023; 136:106542. [PMID: 37087848 DOI: 10.1016/j.bioorg.2023.106542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Two new cyclopropane derivatives (1-2) and seven undescribed α-pyrone derivatives (3-9), along with one known congener (10) were obtained from the marine fungus Stagonospora sp. SYSU-MS7888, which was isolated from the South China Sea. Their planar structures were established through extensive spectroscopic analyses including 1D and 2D NMR and HR-ESIMS. The absolute configurations were identified on basis of the quantum chemical calculations of ECD and NMR, as well as the modified Mosher's method. It's particularly noteworthy that the tetrasubstituted furopyrans, chenopodolans A-F, possessing phytotoxicity and zootoxicity, were structural misassignments. The structures of chenopodolans featuring with furopyran skeleton were revised as common trisubstituted α-pyrones by computational chemistry, NMR spectroscopic method, and empirical rule. Compounds 1, 2, 7, and 9 showed significant anti-inflammatory activity with IC50 values ranging from 3.6 to 22.8 μM, which is better than the positive control indomethacin (IC50 = 26.5 ± 1.13 μM). This discovery holds potential for the development of new anti-inflammatory agents.
Collapse
Affiliation(s)
- Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Qilin Wu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Junjie Chen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Bin Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Hanxiang Li
- Institutional Center for Shared Technologies and Facilities, South China Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou 510650, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
5
|
Cheng S, Wang Q, Chen X, Chen J, Wang B, Chen D, Shen D, Tian J, Ye F, Lu Y, Huang H, Lu Y, Zhang D. Discovery of biphenyls bearing thiobarbiturate fragment by structure-based strategy as Mycobacterium tuberculosis protein tyrosine phosphatase B inhibitors. Bioorg Med Chem 2022; 73:117006. [PMID: 36150342 DOI: 10.1016/j.bmc.2022.117006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
Abstract
Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB) is an important virulence factor that blocks the host immune response and facilitates M. tuberculosis growth in host cells. MptpB inhibitors are potential components of tuberculosis combination treatment. Herein, we present the development of new biphenyls MptpB inhibitors with greatly improved MptpB inhibition based on our reported thiobarbiturate lead 6 by rational design with the structure-based strategy. The eight biphenyls bearing thiobarbiturate fragment target compounds showed more potent MptpB inhibition (IC50: 1.18-14.13 μM) than the lead compound 6. Further molecular docking studies showed that compounds 13, 26, 27 and 28 had multiple interactions with active sites. Among them, compound 13 exhibited dose-dependent increased antituberculosis activity in mouse macrophages. The results displayed that the strategy of modification utilizing biphenyl scaffold was efficient. Our study identifies biphenyls bearing thiobarbiturate fragment as new MptpB inhibitors and verifies the therapeutic potential of antimycobacterial agent targeting MptpB.
Collapse
Affiliation(s)
- Shihao Cheng
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Qinglin Wang
- School of Life Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou, Guangdong 510275, PR China
| | - Xi Chen
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, PR China
| | - Jiahao Chen
- School of Life Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou, Guangdong 510275, PR China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, PR China
| | - Dongni Chen
- School of Life Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou, Guangdong 510275, PR China
| | - Dong Shen
- School of Life Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou, Guangdong 510275, PR China
| | - Jinying Tian
- Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Fei Ye
- Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, PR China
| | - Haihong Huang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| | - Yongjun Lu
- School of Life Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou, Guangdong 510275, PR China.
| | - Dongfeng Zhang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| |
Collapse
|
6
|
Uz Zaman KA, Sarotti AM, Wu X, DeVine L, Cao S. Polyketides, diketopiperazines and an isochromanone from the marine-derived fungal strain Fusarium graminearum FM1010 from Hawaii. PHYTOCHEMISTRY 2022; 198:113138. [PMID: 35219734 DOI: 10.1016/j.phytochem.2022.113138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The fungal strain Fusarium graminearum FM1010 was isolated from a shallow-water volcanic rock known as "live rock" at the Richardson's Beach, Hilo, Hawaii. Eleven specialised metabolites, including two undescribed diketopiperazines, three undescribed polyketides, and one undescribed isochromanone, along with five known fusarielin derivatives were obtained from F. graminearum FM1010. The structures of the six undescribed compounds were elucidated by extensive analysis of NMR spectroscopy, HRESIMS, chemical reactions, and electronic circular dichroism (ECD) data. Kaneoheoic acids G-I showed mild inhibitory activity against S. aureus with the MIC values in the range of 20-40 μg/mL when assayed in combination with chloramphenicol (half of the MIC, 1 μg/mL), an FDA approved antibiotic. Kaneoheoic acid I exhibited both anti-proliferative activity against ovarian cancer cell line A2780 and TNF-α induced NF-κB inhibitory activity with the IC50 values of 18.52 and 15.86 μM, respectively.
Collapse
Affiliation(s)
- Kh Ahammad Uz Zaman
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, 96720, United States
| | - Ariel M Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Argentina.
| | - Xiaohua Wu
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, 96720, United States
| | - Lela DeVine
- Department of Cellular and Molecular Biology, Barnard College of Columbia University, USA.
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, 96720, United States.
| |
Collapse
|
7
|
Menegatti ACO. Targeting protein tyrosine phosphatases for the development of antivirulence agents: Yersinia spp. and Mycobacterium tuberculosis as prototypes. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140782. [PMID: 35470106 DOI: 10.1016/j.bbapap.2022.140782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Protein phosphorylation mediated by protein kinases and phosphatases has a central regulatory function in many cellular processes in eukaryotes and prokaryotes. As a result, several diseases caused by imbalance in phosphorylation levels are known, especially due to protein tyrosine phosphatases (PTPs) activity, an important family of signaling enzymes. Furthermore, over the last decades several studies have shown the main role of PTPs in pathogenic bacteria: they are associated with growth, cell division, cell wall biosynthesis, biofilm formation, metabolic processes, as well as virulence factor. In this way, PTPs have ascended as targets for antibacterial drug design, particularly in view of the antibiotic resistance in pathogenic bacteria, which demands novel therapeutics strategies. Targeting secreted PTPs is an antivirulence strategy to combat the emergence of antimicrobial resistance (AMR). This review focuses on the recent advances in understanding the role of PTPs and the approaches to target them, with an emphasis in Yersinia spp. and Mycobacterium tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Angela Camila Orbem Menegatti
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Paraíba, Brazil.
| |
Collapse
|
8
|
Fungal-derived compounds and mycogenic nanoparticles with antimycobacterial activity: a review. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
AbstractTuberculosis (TB) is a persistent lung infection caused by Mycobacterium tuberculosis. The disease is characterized by high mortality rates of over 1 million per year. Unfortunately, the potency and effectiveness of currently used anti-TB drugs is gradually decreasing due to the constant development of persistence and resistance by M. tuberculosis. The adverse side effects associated with current anti-TB drugs, along with anti-TB drug resistance, present an opportunity to bio-prospect novel potent anti-TB drugs from unique sources. Fundamentally, fungi are a rich source of bioactive secondary metabolites with valuable therapeutic potential. Enhancing the potency and effectiveness of fungal-based anti-TB drug leads by chemical synthesis and/or modification with nanomaterials, may result in the discovery of novel anti-TB drugs. In this review, the antimycobacterial activity of fungal-derived compounds and mycogenic nanoparticles are summarized. Numerous fungal-derived compounds as well as some mycogenic nanoparticles that exhibit strong antimycobacterial activity that is comparable to that of approved drugs, were found. If fully explored, fungi holds the promise to become key drivers in the generation of lead compounds in TB-drug discovery initiatives.
Collapse
|
9
|
Liu G, Huo R, Niu S, Song F, Liu L. Two New Cytotoxic Decalin Derivatives from Marine-Derived Fungus Talaromyces sp. Chem Biodivers 2022; 19:e202100990. [PMID: 35083850 DOI: 10.1002/cbdv.202100990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022]
Abstract
Two new decalin derivatives named fusarielins O (1) and P (2), together with seven known compounds (3-9) were isolated from the crude extract of the marine-derived fungus Talaromyces sp. The planar structures of the new compounds were elucidated by comprehensive spectroscopic analyses of NMR and HR-ESI-MS. The absolute configuration of 1 was assigned by Snatzke's method and comparison of experimental and calculated electronic circular dichroism (ECD) spectra. Compounds 1-9 were evaluated for their cytotoxic activities against three tumor cell lines and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities.
Collapse
Affiliation(s)
- Gaoran Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Ruiyun Huo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Shubin Niu
- School of Biological Medicine, Beijing City University, Beijing, 100083, P. R. China
| | - Fuhang Song
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| |
Collapse
|
10
|
Roux I, Bowles S, Kalaitzis JA, Vuong D, Lacey E, Chooi YH, Piggott AM. Characterisation and heterologous biosynthesis of burnettiene A, a new polyene-decalin polyketide from Aspergillus burnettii. Org Biomol Chem 2021; 19:9506-9513. [PMID: 34714309 DOI: 10.1039/d1ob01766g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chemical exploration of the recently described Australian fungus, Aspergillus burnettii, uncovered a new metabolite, burnettiene A. Here, we characterise the structure of burnettiene A as a polyene-decalin polyketide. Bioinformatic analysis of the genome of A. burnettii identified a putative biosynthetic gene cluster for burnettiene A (bue), consisting of eight genes and sharing similarity to the fusarielin gene cluster. Introduction of the reassembled bue gene cluster into Aspergillus nidulans for heterologous expression resulted in the production of burnettiene A under native promoters. Omission of bueE encoding a cytochrome P450 led to the production of preburnettiene A, confirming that BueE is responsible for catalysing the regiospecific multi-oxidation of terminal methyl groups to carboxylic acids. Similarly, bueF was shown to encode an ester-forming methyltransferase, with its omission resulting in the production of the tricarboxylic acid, preburnettiene B. Introduction of an additional copy of the transcription factor bueR under the regulation of the gpdA promoter significantly improved the heterologous production of the burnettienes. Burnettiene A displayed strong in vitro cytotoxicity against mouse myeloma NS-1 cells (MIC 0.8 μg mL-1).
Collapse
Affiliation(s)
- Indra Roux
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Simon Bowles
- Microbial Screening Technologies Pty. Ltd, Smithfield, NSW 2164, Australia
| | - John A Kalaitzis
- Microbial Screening Technologies Pty. Ltd, Smithfield, NSW 2164, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Daniel Vuong
- Microbial Screening Technologies Pty. Ltd, Smithfield, NSW 2164, Australia
| | - Ernest Lacey
- Microbial Screening Technologies Pty. Ltd, Smithfield, NSW 2164, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Andrew M Piggott
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
11
|
Cazzaniga G, Mori M, Chiarelli LR, Gelain A, Meneghetti F, Villa S. Natural products against key Mycobacterium tuberculosis enzymatic targets: Emerging opportunities for drug discovery. Eur J Med Chem 2021; 224:113732. [PMID: 34399099 DOI: 10.1016/j.ejmech.2021.113732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
For centuries, natural products (NPs) have served as powerful therapeutics against a variety of human ailments. Nowadays, they still represent invaluable resources for the treatment of many diseases, including bacterial infections. After nearly three decades since the World Health Organization's (WHO) declaration of tuberculosis (TB) as a global health emergency, Mycobacterium tuberculosis (Mtb) continues to claim millions of lives, remaining among the leading causes of death worldwide. In the last years, several efforts have been devoted to shortening and improving treatment outcomes, and to overcoming the increasing resistance phenomenon. Nature has always provided a virtually unlimited source of bioactive molecules, which have inspired the development of new drugs. NPs are characterized by an exceptional chemical and structural diversity, the result of millennia of evolutionary responses to various stimuli. Thanks to their favorable structural features and their enzymatic origin, they are naturally prone to bind proteins and exhibit bioactivities. Furthermore, their worldwide distribution and ease of accessibility has contributed to promote investigations on their activity. Overall, these characteristics make NPs excellent models for the design of novel therapeutics. This review offers a critical and comprehensive overview of the most promising NPs, isolated from plants, fungi, marine species, and bacteria, endowed with inhibitory properties against traditional and emerging mycobacterial enzymatic targets. A selection of 86 compounds is here discussed, with a special emphasis on their biological activity, structure-activity relationships, and mechanism of action. Our study corroborates the antimycobacterial potential of NPs, substantiating their relevance in future drug discovery and development efforts.
Collapse
Affiliation(s)
- Giulia Cazzaniga
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy
| | - Matteo Mori
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy
| | - Laurent Roberto Chiarelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via A. Ferrata 9, 27100, Pavia, Italy
| | - Arianna Gelain
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy
| | - Fiorella Meneghetti
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy.
| | - Stefania Villa
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy
| |
Collapse
|
12
|
Guo H, Wu Q, Chen D, Jiang M, Chen B, Lu Y, Li J, Liu L, Chen S. Absolute configuration of polypropionate derivatives: Decempyrones A-J and their MptpA inhibition and anti-inflammatory activities. Bioorg Chem 2021; 115:105156. [PMID: 34314917 DOI: 10.1016/j.bioorg.2021.105156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
Under guidance of 1H NMR, ten new polypropionate derivatives, decempyrones A-J (1-10) along with two known analogues (11 and 12), were isolated from the marine-derived fungusFusarium decemcellulare SYSU-MS6716. The planar structures were elucidated on the basis of extensive spectroscopic analyses (1D and 2D NMR, and HR-ESIMS). The absolute configuration of the chiral centers in the side chain is a major obstacle for the structure identification of natural polypropionate derivatives. Herein, the J-based configurational analysis (JBCA), chemical degradation, geminal proton rule, and the modified Mosher's method were adopted to fix their absolute configurations in the side chain. Compounds 3 and 10 exhibited potent anti-inflammatory activity by inhibiting the production of NO in RAW264.7 cells activated by lipopolysaccharide with IC50values 22.4 ± 1.8 and 21.7 ± 1.1 μM. In addition, compounds 3 and 10 displayed MptpA inhibitory activity with an IC50 value of 19.2 ± 0.9 and 33.1 ± 2.9 µM. Structure-activity relationships of the polypropionate derivatives were discussed.
Collapse
Affiliation(s)
- Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qilin Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongni Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bin Chen
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Yongjun Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing Li
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China.
| |
Collapse
|
13
|
Gomes NGM, Madureira-Carvalho Á, Dias-da-Silva D, Valentão P, Andrade PB. Biosynthetic versatility of marine-derived fungi on the delivery of novel antibacterial agents against priority pathogens. Biomed Pharmacother 2021; 140:111756. [PMID: 34051618 DOI: 10.1016/j.biopha.2021.111756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022] Open
Abstract
Despite the increasing number of novel marine natural products being reported from fungi in the last three decades, to date only the broad-spectrum cephalosporin C can be tracked back as marine fungal-derived drug. Cephalosporins were isolated in the early 1940s from a strain of Acremonium chrysogenum obtained in a sample collected in sewage water in the Sardinian coast, preliminary findings allowing the discovery of cephalosporin C. Since then, bioprospection of marine fungi has been enabling the identification of several metabolites with antibacterial effects, many of which proving to be active against multi-drug resistant strains, available data suggesting also that some might fuel the pharmaceutical firepower towards some of the bacterial pathogens classified as a priority by the World Health Organization. Considering the success of their terrestrial counterparts on the discovery and development of several antibiotics that are nowadays used in the clinical setting, marine fungi obviously come into mind as producers of new prototypes to counteract antibiotic-resistant bacteria that are no longer responding to available treatments. We mainly aim to provide a snapshot on those metabolites that are likely to proceed to advanced preclinical development, not only based on their antibacterial potency, but also considering their targets and modes of action, and activity against priority pathogens.
Collapse
Affiliation(s)
- Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Áurea Madureira-Carvalho
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal.
| | - Diana Dias-da-Silva
- IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| |
Collapse
|