1
|
Kumar A, Kaushal A, Verma PK, Gupta MK, Chandra G, Kumar U, Yadav AK, Kumar D. An insight into recent developments in imidazole based heterocyclic compounds as anticancer agents: Synthesis, SARs, and mechanism of actions. Eur J Med Chem 2024; 280:116896. [PMID: 39366252 DOI: 10.1016/j.ejmech.2024.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Among all non-communicable diseases, cancer is ranked as the second most common cause of death and is rising constantly. While cancer treatments mainly include radiation therapy, chemotherapy, and surgery; chemotherapy is considered the most commonly employed and effective treatment. Most of the chemotherapeutic agents are azoles based compounds and imidazole is one such insightful azole. The anticancer properties of imidazole-based compounds have been thoroughly explored in recent years and all monosubstituted, disubstituted, trisubstituted, and tetrasubstituted imidazoles have been explored for their anticancer activities. Along with these compounds, other imidazole-based compounds like 1,3-dihydro-2H-imidazole-2-thiones, imidazolones, and poly imidazole compounds have also been explored for their anticancer activities. The activities of these compounds are heavily influenced by their structural resemblance to combretastatin 4A and ABI (2-aryl-4-benzoyl-imidazole). The lead compounds were highly active on breast, gastric, colon, ovarian, cervical, bone marrow, melanoma, prostate, lung, leukemic, neuroblastoma, liver, Ehrlich, melanoma, and pancreatic cancers. The targets of these leads like tubulin, heme oxygenases, VEGF, tyrosine kinases, EGFR, and others have also been explored. The exploration of the anticancer potential of substituted imidazole compounds is the main topic of this review including synthesis, SAR, and mechanism.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India
| | - Anjali Kaushal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India; Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Prabhakar K Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Manoj K Gupta
- Department of Chemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, Gaya, Bihar, 824236, India
| | - Umesh Kumar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, 110019, India
| | - Ashok K Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India.
| |
Collapse
|
2
|
Maji L, Teli G, Raghavendra NM, Sengupta S, Pal R, Ghara A, Matada GSP. An updated literature on BRAF inhibitors (2018-2023). Mol Divers 2024; 28:2689-2730. [PMID: 37470921 DOI: 10.1007/s11030-023-10699-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
BRAF is the most common serine-threonine protein kinase and regulates signal transduction from RAS to MEK inside the cell. The BRAF is a highly active isoform of RAF kinase. BRAF has two domains such as regulatory and kinase domains. The BRAF inhibitors bind in the c-terminus of the kinase domain and inhibit the downstream pathways. The mutation occurs mainly in the A-loop of the kinase domain. The mutation occurs due to a conversion of valine to glutamate/lysine/arginine/aspartic acid at 600th position. Among the diverse mutations, BRAFV600E is the most common and responsible for numerous cancer such as melanoma, colorectal, ovarian, and thyroid cancer. Due to mutations in RAC1, loss of PTEN, NF1, CCND1, USP28-FBW7 complex, COT overexpression, and CCND1 amplification, the BRAF kinase enzyme developed resistance over the commercially available BRAF inhibitors. There is still unmute urgence for the development of BRAF inhibitors to overcome the persistent limitation such as resistance, mutation, and adverse effects of drugs. In the current study, we described the structure, activation, downstream signaling pathway, and mutation of BRAF. Our group also provided a detailed review of BRAF inhibitors from the last five years (2018-2023) highlighting the structure-activity relationship, mechanistic study, and molecular docking studies. We hope that the current analysis will be a useful resource for researchers and provide chemists a glimpse into the future as design and development of more effective and secure BRAF kinase inhibitors.
Collapse
Affiliation(s)
- Lalmohan Maji
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Ghanshyam Teli
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Sindhuja Sengupta
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Rohit Pal
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Abhishek Ghara
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | |
Collapse
|
3
|
Zhao C, Liu Y, Cui Z. Recent development of azole-sulfonamide hybrids with the anticancer potential. Future Med Chem 2024; 16:1267-1281. [PMID: 38989985 PMCID: PMC11244697 DOI: 10.1080/17568919.2024.2351291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/30/2024] [Indexed: 07/12/2024] Open
Abstract
Cancer exhibits heterogeneity that enables adaptability and remains grand challenges for effective treatment. Chemotherapy is a validated and critically important strategy for the treatment of cancer, but the emergence of multidrug resistance which may lead to recurrence of disease or even death is a major hurdle for successful chemotherapy. Azoles and sulfonamides are important anticancer pharmacophores, and azole-sulfonamide hybrids have the potential to simultaneously act on dual/multiple targets in cancer cells, holding great promise to overcome drug resistance. This review outlines the current scenario of azole-sulfonamide hybrids with the anticancer potential, and the structure-activity relationships as well as mechanisms of action are also discussed, covering articles published from 2020 onward.
Collapse
Affiliation(s)
- Chenyuan Zhao
- Huludao Central Hospital, Huludao, 125000, Liaoning, China
| | - Yang Liu
- Huludao Central Hospital, Huludao, 125000, Liaoning, China
| | - Zhuo Cui
- Huludao Central Hospital, Huludao, 125000, Liaoning, China
| |
Collapse
|
4
|
El-Gaby MSA, Abdel Reheim MAM, Akrim ZSM, Naguib BH, Saleh NM, El-Adasy ABAAM, El-Adl K, Mohamady S. 2-Thioxo-3,4-dihydropyrimidine and thiourea endowed with sulfonamide moieties as dual EGFR T790M and VEGFR-2 inhibitors: Design, synthesis, docking, and anticancer evaluations. Drug Dev Res 2024; 85:e22143. [PMID: 38349267 DOI: 10.1002/ddr.22143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 12/16/2023] [Indexed: 02/15/2024]
Abstract
The effectiveness of a new series of thiopyrimidine and thiourea containing sulfonamides moieties was tested on HCT-116, MCF-7, HepG2, and A549. HepG2 cell line was the one that all the new derivatives affected the most. The greatest potent compounds against the four HepG2, HCT116, MCF-7, and A549 cell lines were 8f and 8g with IC50 = 4.13, 6.64, 5.74, 6.85 µM and 4.09, 4.36, 4.22, 7.25 µM correspondingly. Compound 8g exhibited higher activity than sorafenib against HCT116 and MCF-7 but exhibited lower activity against HepG2 and A549. Moreover, compounds 8f and 8g exhibited higher activities than erlotinib on HepG2, HCT116, and MCF-7 but demonstrated lower activity on A549. The most potent cytotoxic derivatives 6f, 6g, 8c, 8d, 8e, 8f, and 8g were examined on normal VERO cell lines. Our derivatives have low toxicity on VERO cells with IC50 values ranging from 32.05 to 53.15 μM. Additionally, all compounds were assessed for dual VEGFR-2 and EGFRT790M inhibition effects. Compounds 8f and 8g were the most potent derivatives inhibited VEGFR-2 at IC50 value of 0.88 and 0.90 µM, correspondingly. As well, derivatives 8f and 8g could inhibit EGFRT790M demonstrating strongest effects with IC50 = 0.32 and 0.33 µM sequentially. Additionally, the greatest active derivatives ADMET profile was evaluated in relationship with sorafenib and erlotinib as reference agents. The data attained from docking were greatly related to that achieved from the biological testing.
Collapse
Affiliation(s)
- Mohamed S A El-Gaby
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | | | - Zuhir S M Akrim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Omar Almukhtar University Al-Bayda, Libya
| | - Bassem H Naguib
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Nashwa M Saleh
- Department of Chemistry, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | | | - Khaled El-Adl
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Samy Mohamady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
5
|
Al-Sanea MM, Abdel-Maksoud MS, El-Behairy MF, Hamdi A, Ur Rahman H, Parambi DGT, Elbargisy RM, Mohamed AAB. Anti-inflammatory effect of 3-fluorophenyl pyrimidinylimidazo[2,1-b]thiazole derivatives as p38α inhibitors. Bioorg Chem 2023; 139:106716. [PMID: 37459825 DOI: 10.1016/j.bioorg.2023.106716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/21/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
In the present work, the anti-inflammatory effect of 30 compounds containing 3-fluorophenyl pyrimidinylimidazo[2,1-b]thiazole was investigated. All final target compounds showed significant Inhibitory effect on p38α. P38α is considered one of the key kinases in the inflammatory process due to its regulatory effect on pro-inflammatory mediators. The final target compounds divided into four group based on the type of terminal moiety (amide and sulfonamide) and the linker between pyrimidine ring and terminal moiety (ethyl and propyl). Most compounds with terminal sulfonamide moiety and propyl linker between the sulfonamide and pyrimidine ring were the most potent among all synthesized final target compounds with sub-micromolar IC50s. Compound 24g (with p-Cl benzene sulfonamide and propyl linker) exhibited the highest activity over P38α with IC50 0.68 µM. All final target compounds were tested for their ability to inhibit nitric oxide release and prostaglandin E2 production. Compounds having amide terminal moiety with ethyl linker showed higher inhibitory activity for nitric oxide release and compound 21d exhibited the highest activity for nitric oxide release with IC50 1.21 µM. Compounds with terminal sulfonamide moiety and propyl linker showed the highest activity for inhibiting PGE2 production and compounds 24i and 24g had the lowest IC50s with value 0.87 and 0.89 µM, respectively. Compounds 21d, 22d and 24g were tested for their ability to inhibit over expression of iNOS, COX1, and COX2. In addition the ability of compounds 21d, 22d and 24g to inhibit inflammatory cytokines were determined. Finally molecular docking of the three compounds were performed on P38α crystal structure to expect their mode of binding.
Collapse
Affiliation(s)
- Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia.
| | - Mohammed S Abdel-Maksoud
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), Dokki, Giza, Egypt.
| | - Mohammed Farrag El-Behairy
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufiya 32897, Egypt
| | - Abdelrahman Hamdi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hidayat Ur Rahman
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Della G T Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Rehab M Elbargisy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Ahmed A B Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Mahapatra M, Mohapatra P, Pakeeraiah K, Bandaru RK, Ahmad I, Mal S, Dandela R, Sahoo SK, Patel H, Paidesetty SK. In-vitro anticancer evaluation of newly designed and characterized tri/tetra-substituted imidazole congeners- maternal embryonic leucine zipper kinase inhibitors: Molecular docking and MD simulation approaches. Int J Biol Macromol 2023; 249:126084. [PMID: 37532192 DOI: 10.1016/j.ijbiomac.2023.126084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Our cascading attempt to develop new potent molecules now involves designing a series of imidazole derivatives and synthesizing two sets of 2,4,5- tri-substituted (4a-4d) and 1,2,4,5-tetra-substituted (6a-6d) imidazole by the principle of Debus-Radziszewski multicomponent synthesis reaction. The structures of the obtained compounds were confirmed by 1H/13C NMR, FT-IR, elemental analysis, purity and the retention time was analyzed by HPLC. Based upon the binding affinity in the molecular docking studies, we have synthesized different imidazole derivatives from which compound 6c have been found to show more anti-proliferative activity by inducing apoptosis at a higher rate than the other compounds corroborating the in-silico prediction. The structure and crystallinity of compound 4d have been confirmed by single XRD analysis. The synthesized molecules were screened for their in vitro anti-cancer properties in triple negative breast cancer cell line (MDA-MB-231), pancreatic cancer cell lines (MIA PaCa-2) and oral squamous cell carcinoma cell line (H357) and results indicated that all the compounds inhibited the cell proliferation in a concentration-dependent manner at different time points. The compounds 4b and 6d were found to be effective against the S. aureus bacterial strain whereas only compound 4d fairly inhibited the fungal strain of T. rubrum with a MIC 12.5 μg/mL. Molecular docking study reveals good interaction of the synthesized compounds with known target MELK involved in oncogenesis having high binding profiles. The lead compound 6c was further analyzed by the detailed molecular dynamics study to establish the stability of the ligand-enzyme complex.
Collapse
Affiliation(s)
- Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India
| | | | - Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India
| | - Ravi Kumar Bandaru
- Institute of Chemical Technology-Indian Oil Campus, Bhubaneswar, Odisha 751024, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India; Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | - Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India
| | - Rambabu Dandela
- Institute of Chemical Technology-Indian Oil Campus, Bhubaneswar, Odisha 751024, India
| | | | - Harun Patel
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
7
|
Singh A, Sonawane P, Kumar A, Singh H, Naumovich V, Pathak P, Grishina M, Khalilullah H, Jaremko M, Emwas AH, Verma A, Kumar P. Challenges and Opportunities in the Crusade of BRAF Inhibitors: From 2002 to 2022. ACS OMEGA 2023; 8:27819-27844. [PMID: 37576670 PMCID: PMC10413849 DOI: 10.1021/acsomega.3c00332] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 08/15/2023]
Abstract
Serine/threonine-protein kinase B-Raf (BRAF; RAF = rapidly accelerated fibrosarcoma) plays an important role in the mitogen-activated protein kinase (MAPK) signaling cascade. Somatic mutations in the BRAF gene were first discovered in 2002 by Davies et al., which was a major breakthrough in cancer research. Subsequently, three different classes of BRAF mutants have been discovered. This class includes class I monomeric mutants (BRAFV600), class II BRAF homodimer mutants (non-V600), and class III BRAF heterodimers (non-V600). Cancers caused by these include melanoma, thyroid cancer, ovarian cancer, colorectal cancer, nonsmall cell lung cancer, and others. In this study, we have highlighted the major binding pockets in BRAF protein, their active and inactive conformations with inhibitors, and BRAF dimerization and its importance in paradoxical activation and BRAF mutation. We have discussed the first-, second-, and third-generation drugs approved by the Food and Drug Administration and drugs under clinical trials with all four different binding approaches with DFG-IN/OUT and αC-IN/OUT for BRAF protein. We have investigated particular aspects and difficulties with all three generations of inhibitors. Finally, this study has also covered recent developments in synthetic BRAF inhibitors (from their discovery in 2002 to 2022), their unique properties, and importance in inhibiting BRAF mutants.
Collapse
Affiliation(s)
- Ankit
Kumar Singh
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Pankaj Sonawane
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Adarsh Kumar
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Harshwardhan Singh
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Vladislav Naumovich
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Prateek Pathak
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Maria Grishina
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Habibullah Khalilullah
- Department
of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of
Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health
Initiative and Red Sea Research Center, Division of Biological and
Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology, Thuwal 23955-6900, Saudi
Arabia
| | - Amita Verma
- Bioorganic
and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical
Sciences, Sam Higginbottom University of
Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Pradeep Kumar
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| |
Collapse
|
8
|
Aruchamy B, Drago C, Russo V, Pitari GM, Ramani P, Aneesh TP, Benny S, Vishnu VR. Imidazole-pyridine hybrids as potent anti-cancer agents. Eur J Pharm Sci 2023; 180:106323. [PMID: 36336277 DOI: 10.1016/j.ejps.2022.106323] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
In the current investigation, fifteen novel imidazole-pyridine-based molecules were synthesized and tested against cell lines of the lung (H1299) and colon (HCT116) adenocarcinomas by proliferation assay. The results demonstrated that compounds 5a, 5d, 5e, and 5f were the most active (IC50<30 µM). Based on recent literature and the current results, the glycogen synthase kinase-3β (GSK-3β) protein was investigated in-silico as a possible target. The molecular docking and QSAR revealed an excellent binding affinity of the selected imidazole-pyridine compounds to GSK-3β. Notably, GSK-3β protein levels were significantly upregulated in hepatocellular liver carcinoma (LIHCs) tissues and negatively affected patient prognosis. Consequently, the compounds were evaluated on liver cancer cell lines (HepG2, HUH-7, and PLC/PRF/5) by the MTT assay, and 5d showed the highest antitumor activity. This study offers new compounds with interesting biological activity on GSK-3β as a target, exhibiting a potential therapeutic impact for hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Baladhandapani Aruchamy
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Carmelo Drago
- Institute of Biomolecular Chemistry, CNR, via Paolo Gaifami 18, I-95126 Catania, Italy.
| | - Venera Russo
- Vera Salus Ricerca S.r.l., Via Sigmund Freud 62/B, 96100 Siracusa, Italy
| | | | - Prasanna Ramani
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India.
| | - T P Aneesh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala 682041, India
| | - Sonu Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala 682041, India
| | - V R Vishnu
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala 682041, India
| |
Collapse
|
9
|
Anticancer activity and QSAR study of sulfur-containing thiourea and sulfonamide derivatives. Heliyon 2022; 8:e10067. [PMID: 35991984 PMCID: PMC9389185 DOI: 10.1016/j.heliyon.2022.e10067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 04/01/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Sulfur-containing compounds are considered as attractive pharmacophores for discovery of new drugs regarding their versatile properties to interact with various biological targets. Quantitative structure-activity relationship (QSAR) modeling is one of well-recognized in silico tools for successful drug discovery. In this work, a set of 38 sulfur-containing derivatives (Types I–VI) were evaluated for their in vitro anticancer activities against 6 cancer cell lines. In vitro findings indicated that compound 13 was the most potent cytotoxic agent toward HuCCA-1 cell line (IC50 = 14.47 μM). Compound 14 exhibited the most potent activities against 3 investigated cell lines (i.e., HepG2, A549, and MDA-MB-231: IC50 range = 1.50–16.67 μM). Compound 10 showed the best activity for MOLT-3 (IC50 = 1.20 μM) whereas compound 22 was noted for T47D (IC50 = 7.10 μM). Subsequently, six QSAR models were built using multiple linear regression (MLR) algorithm. All constructed QSAR models provided reliable predictive performance (training sets: Rtr range = 0.8301–0.9636 and RMSEtr = 0.0666–0.2680; leave-one-out cross validation sets: RCV range = 0.7628–0.9290 and RMSECV = 0.0926–0.3188). From QSAR modeling, chemical properties such as mass, polarizability, electronegativity, van der Waals volume, octanol-water partition coefficient, as well as frequency/presence of C–N, F–F, and N–N bonds in the molecule are essential key predictors for anticancer activities of the compounds. In summary, a series of promising fluoro-thiourea derivatives (10, 13, 14, 22) were suggested as potential molecules for future development as anticancer agents. Key structure-activity knowledge obtained from the QSAR modeling was suggested to be advantageous for suggesting the effective rational design of the related sulfur-containing anticancer compounds with improved bioactivities and properties.
Collapse
|
10
|
Kozyra P, Krasowska D, Pitucha M. New Potential Agents for Malignant Melanoma Treatment-Most Recent Studies 2020-2022. Int J Mol Sci 2022; 23:6084. [PMID: 35682764 PMCID: PMC9180979 DOI: 10.3390/ijms23116084] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Malignant melanoma (MM) is the most lethal skin cancer. Despite a 4% reduction in mortality over the past few years, an increasing number of new diagnosed cases appear each year. Long-term therapy and the development of resistance to the drugs used drive the search for more and more new agents with anti-melanoma activity. This review focuses on the most recent synthesized anti-melanoma agents from 2020-2022. For selected agents, apart from the analysis of biological activity, the structure-activity relationship (SAR) is also discussed. To the best of our knowledge, the following literature review delivers the latest achievements in the field of new anti-melanoma agents.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Danuta Krasowska
- Department of Dermatology, Venerology and Pediatric Dermatology, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
11
|
Eco-friendly and regiospecific intramolecular cyclization reactions of cyano and carbonyl groups in N,N-disubstituted cyanamide. Mol Divers 2022; 26:2813-2823. [DOI: 10.1007/s11030-022-10401-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/05/2022] [Indexed: 12/16/2022]
|
12
|
Qiao Y, Yuan J, Wan C, Li Y, Wang Y. The crystal structure of 1-methyl-2-nitroimidazole, C4H5N3O2. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2021-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C4H5N3O2, monoclinic, P21/c (no. 14), a = 4.0668(13) Å, b = 11.198(4) Å, c = 6.137(2) Å, β = 97.033(11)°, V = 277.40(16) Å3, Z = 2, R
gt
(F) = 0.0444, wR
ref
(F
2) = 0.1048, T = 170.00 K.
Collapse
Affiliation(s)
- Yanan Qiao
- Shanxi College of Technology , Shuozhou 036000 , Shanxi Province , P. R. China
| | - Jun Yuan
- Shanxi College of Technology , Shuozhou 036000 , Shanxi Province , P. R. China
| | - Changyuan Wan
- Shanxi College of Technology , Shuozhou 036000 , Shanxi Province , P. R. China
| | - Yuexia Li
- Shanxi College of Technology , Shuozhou 036000 , Shanxi Province , P. R. China
| | - Yong Wang
- North University of China , Taiyuan 030051 , Shanxi Province , P. R. China
| |
Collapse
|
13
|
Kumar N, Goel N. Recent development of imidazole derivatives as potential anticancer agents. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Cancer, one of the key health problems globally, is a group of related diseases that share a number of characteristics primarily the uncontrolled growth and invasive to surrounding tissues. Chemotherapy is one of the ways for the treatment of cancer which uses one or more anticancer agents as per chemotherapy regimen. Limitations of most anticancer drugs due to a variety of reasons such as serious side effects, drug resistance, lack of sensitivity and efficacy etc. generate the necessity towards the designing of novel anticancer lead molecules. In this regard, the synthesis of biologically active heterocyclic molecules is an appealing research area. Among heterocyclic compounds, nitrogen containing heterocyclic molecules has fascinated tremendous consideration due to broad range of pharmaceutical activity. Imidazoles, extensively present in natural products as well as synthetic molecules, have two nitrogen atoms, and are five membered heterocyclic rings. Because of their countless physiological and pharmacological characteristics, medicinal chemists are enthused to design and synthesize new imidazole derivatives with improved pharmacodynamic and pharmacokinetic properties. The aim of this present chapter is to discuss the synthesis, chemistry, pharmacological activity, and scope of imidazole-based molecules in anticancer drug development. Finally, we have discussed the current challenges and future perspectives of imidazole-based derivatives in anticancer drug development.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Indore , Madhya Pradesh 453552 , India
| | - Nidhi Goel
- Department of Chemistry , Institute of Science, Banaras Hindu University , Varanasi , Uttar Pradesh 221005 , India
| |
Collapse
|
14
|
Ali EMH, Mersal KI, Ammar UM, Zaraei SO, Abdel-Maksoud MS, El-Gamal MI, Haque MM, Das T, Kim EE, Lee JS, Lee KH, Kim HK, Oh CH. Structural optimization of 4-(imidazol-5-yl)pyridine derivatives affords broad-spectrum anticancer agents with selective B-RAF V600E/p38α kinase inhibitory activity: Synthesis, in vitro assays and in silico study. Eur J Pharm Sci 2022; 171:106115. [PMID: 34995782 DOI: 10.1016/j.ejps.2022.106115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/26/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023]
Abstract
In the current article, we introduce design of a new series of 4-(imidazol-5-yl)pyridines with improved anticancer activity and selective B-RAFV600E/p38α kinase inhibitory activity. Based on a previous work, a group of structural modifications were applied affording the new potential antiproliferative agents. Towards extensive biological assessment of the target compounds, an in vitro anticancer assay was conducted over NCI 60-cancer cell lines panel representing blood, lung, colon, CNS, skin, ovary, renal, prostate, and breast cancers. Compounds 7c, 7d, 8b, 9b, 9c, 10c, 10d, and 11b exhibited the highest potency among the tested compounds and demonstrated sub-micromolar or one-digit micromolar GI50 values against the majority of the employed cell lines. Compound 10c emerged as the most potent agent with nano-molar activity over most of the cells and incredible activity against melanoma (MDA-MB-435) cell line (GI50 70 nM). It is much more potent than sorafenib, the clinically used anticancer drug, against almost all the NCI-60 cell lines. Further cell-based mechanistic assays showed that compound 10c induced cell cycle arrest and promoted apoptosis in K562, MCF-7 and HT29 cancer cell lines. In addition, compound 10c induced autophagy in the three cancer cell lines. Kinase profiling of 10c showed its inhibitory effects and selectivity towards B-RAFV600E and p38α kinases with IC50 values of 1.84 and 0.726 µM, respectively. Docking of compound 10c disclosed its high affinity in the kinases pockets. Compound 10c represent a promising anticancer agent, that could be optimized in order to improve its kinase activity aiming at developing potential anticancer agents. The conformational stability of compound 10c in the active site of B-RAFV600E and p38α kinases was studied by applying molecular dynamic simulation of the compound in the two kinases for 600 ns in comparison to the native ligands.
Collapse
Affiliation(s)
- Eslam M H Ali
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu, 02792, Republic of Korea; University of Science & Technology (UST), Daejeon, Yuseong-gu, 34113, Republic of Korea; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, 12055, Egypt
| | - Karim I Mersal
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu, 02792, Republic of Korea; University of Science & Technology (UST), Daejeon, Yuseong-gu, 34113, Republic of Korea; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, 12055, Egypt
| | - Usama M Ammar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United Kingdom
| | - Seyed-Omar Zaraei
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu, 02792, Republic of Korea; University of Science & Technology (UST), Daejeon, Yuseong-gu, 34113, Republic of Korea
| | - Mohammed S Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre NRC (ID: 60014618)), Dokki, Giza, 12622, Egypt
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Md Mamunul Haque
- Department of Pharmacology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Tanuza Das
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jun-Seok Lee
- Department of Pharmacology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Kwan Hyi Lee
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Republic of Korea.
| | - Chang-Hyun Oh
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu, 02792, Republic of Korea; University of Science & Technology (UST), Daejeon, Yuseong-gu, 34113, Republic of Korea.
| |
Collapse
|
15
|
Balandis B, Mickevičius V, Petrikaitė V. Exploration of Benzenesulfonamide-Bearing Imidazole Derivatives Activity in Triple-Negative Breast Cancer and Melanoma 2D and 3D Cell Cultures. Pharmaceuticals (Basel) 2021; 14:1158. [PMID: 34832940 PMCID: PMC8625351 DOI: 10.3390/ph14111158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
Heterocyclic compounds are one of the main groups of organic compounds possessing wide range of applications in various areas of science and their derivatives are present in many bioactive structures. They display a wide variety of biological activities. Recently, more and more attention has been focused to such heterocyclic compounds as azoles. In this work, we have synthesized a series of new imidazole derivatives incorporating a benzenesulfonamide moiety in their structure, which then were evaluated for their cytotoxicity against human triple-negative breast cancer MDA-MB-231 and human malignant melanoma IGR39 cell lines by MTT assay. Benzenesulfonamide-bearing imidazole derivatives containing 4-chloro and 3,4-dichlorosubstituents in benzene ring, and 2-ethylthio and 3-ethyl groups in imidazole ring have been determined as the most active compounds. Half-maximal effective concentration (EC50) of the most cytotoxic compound was 27.8 ± 2.8 µM against IGR39 cell line and 20.5 ± 3.6 µM against MDA-MB-231 cell line. Compounds reduced cell colony formation of both cell lines and inhibited the growth and viability of IGR39 cell spheroids more efficiently compared to triple-negative breast cancer spheroids.
Collapse
Affiliation(s)
- Benas Balandis
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania;
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania;
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania;
- Institute of Physiology and Pharmacology, Faculty of Medicine, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
16
|
Alghamdi SS, Suliman RS, Almutairi K, Kahtani K, Aljatli D. Imidazole as a Promising Medicinal Scaffold: Current Status and Future Direction. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3289-3312. [PMID: 34354342 PMCID: PMC8329171 DOI: 10.2147/dddt.s307113] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022]
Abstract
Various imidazole-containing compounds have been tested for their medical usefulness in clinical trials for several disease conditions. The rapid expansion of imidazole-based medicinal chemistry suggests the promising and potential therapeutic values of imidazole-derived compounds for treating incurable diseases. Imidazole core scaffold contains three carbon atoms, and two nitrogen with electronic-rich characteristics that are responsible for readily binding with a variety of enzymes, proteins, and receptors compared to the other heterocyclic rings. Herein, we provide a thorough overview of the current research status of imidazole-based compounds with a wide variety of biological activities including anti-cancer, anti-microbial, anti-inflammatory and their potential mechanisms including topoisomerase IIR catalytic inhibition, focal adhesion kinase (FAK) inhibition, c-MYC G-quadruplex DNA stabilization, and aurora kinase inhibition. Additionally, a great interest was reported in the discovery of novel imidazole compounds with anti-microbial properties that break DNA double-strand helix and inhibit protein kinase. Moreover, anti-inflammatory mechanisms of imidazole derivatives include inhibition of COX-2 enzyme, inhibit neutrophils degranulation, and generation of reactive oxygen species. This systemic review helps to design and discover more potent and efficacious imidazole compounds based on the reported derivatives, their ADME profiles, and bioavailability scores that together aid to advance this class of compounds.
Collapse
Affiliation(s)
- Sahar S Alghamdi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia.,Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Rasha S Suliman
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia.,Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Khlood Almutairi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Khawla Kahtani
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Dimah Aljatli
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Tunel H, Er M, Alici H, Onaran A, Karakurt T, Tahtaci H. Synthesis, structural characterization, biological activity, and theoretical studies of some novel
thioether‐bridged
2,
6‐disubstituted
imidazothiadiazole analogues. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hasan Tunel
- Department of Chemistry, Faculty of Science Karabuk University Karabuk Turkey
| | - Mustafa Er
- Department of Chemistry, Faculty of Science Karabuk University Karabuk Turkey
| | - Hakan Alici
- Department of Physics, Faculty of Arts and Sciences Zonguldak Bulent Ecevit University Zonguldak Turkey
| | - Abdurrahman Onaran
- Department of Plant and Animal Production, Kumluca Vocational School of Higher Education Akdeniz University Antalya Turkey
| | - Tuncay Karakurt
- Department of Chemical Engineering, Faculty of Engineering and Architecture Kirsehir Ahi Evran University Kirsehir Turkey
| | - Hakan Tahtaci
- Department of Chemistry, Faculty of Science Karabuk University Karabuk Turkey
| |
Collapse
|
18
|
5-Aryl-1-Arylideneamino-1 H-Imidazole-2(3 H)-Thiones: Synthesis and In Vitro Anticancer Evaluation. Molecules 2021; 26:molecules26061706. [PMID: 33803877 PMCID: PMC8003321 DOI: 10.3390/molecules26061706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
A novel series of N-1 arylidene amino imidazole-2-thiones were synthesized, identified using IR, 1H-NMR, and 13C-NMR spectral data. Cytotoxic effect of the prepared compounds was carried out utilizing three cancer cell lines; MCF-7 breast cancer, HepG2 liver cancer, and HCT-116 colon cancer cell lines. Imidazole derivative 5 was the most potent of all against three cell lines. DNA flow cytometric analysis showed that, imidazoles 4d and 5 exhibit pre-G1 apoptosis and cell cycle arrest at G2/M phase. The results of the VEGFR-2 and B-Raf kinase inhibition assay revealed that compounds 4d and 5 displayed good inhibitory activity compared with reference drug erlotinib.
Collapse
|
19
|
Ali EMH, El-Telbany RFA, Abdel-Maksoud MS, Ammar UM, Mersal KI, Zaraei SO, El-Gamal MI, Choi SI, Lee KT, Kim HK, Lee KH, Oh CH. Design, synthesis, biological evaluation, and docking studies of novel (imidazol-5-yl)pyrimidine-based derivatives as dual BRAF V600E/p38α inhibitors. Eur J Med Chem 2021; 215:113277. [PMID: 33601311 DOI: 10.1016/j.ejmech.2021.113277] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 01/07/2023]
Abstract
The synergistic effect of dual inhibition of serine/threonine protein kinases that are involved in the same signalling pathway of the diseases can exert superior biological benefits for treatment of these diseases. In the present work, a new series of (imidazol-5-yl)pyrimidine was designed and synthesized as dual inhibitors of BRAFV600E and p38α kinases which are considered as key regulators in mitogen-activated protein kinase (MAPK) signalling pathway. The target compounds were evaluated for dual kinase inhibitory activity. The tested compounds exhibited nanomolar scale IC50 values against BRAFV600E and low to sub-micromolar IC50 range against p38α. Compound 20h was identified as the most potent dual BRAFV600E/p38α inhibitor with IC50 values of 2.49 and 85 nM, respectively. Further deep investigation revealed that compound 20h possesses inhibitory activity of TNF-α production in lipopolysaccharide-induced RAW 264.7 macrophages with IC50 value of 96.3 nM. Additionally, the target compounds efficiently frustrated the proliferation of LOX-IMVI melanoma cell line. Compound 20h showed a satisfactory antiproliferative activity with IC50 value of 13 μM, while, compound 18f exhibited the highest cytotoxicity potency with IC50 value of 0.9 μM. Compound 18f is 11.11-fold more selective toward LOX-IMVI melanoma cells than IOSE-80PC normal cells. The newly reported compounds represent therapeutically promising candidates for further development of BRAFV600E/p38α inhibitors in an attempt to overcome the acquired resistance of BRAF mutant melanoma.
Collapse
Affiliation(s)
- Eslam M H Ali
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu, 02792, Republic of Korea; University of Science & Technology (UST), Daejeon, Yuseong-gu, 34113, Republic of Korea; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, 12055, Egypt
| | - Rania Farag A El-Telbany
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, 12055, Egypt
| | - Mohammed S Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre NRC (ID: 60014618)), Dokki, Giza, 12622, Egypt
| | - Usama M Ammar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0NR, Scotland, United Kingdom
| | - Karim I Mersal
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu, 02792, Republic of Korea; University of Science & Technology (UST), Daejeon, Yuseong-gu, 34113, Republic of Korea
| | - Seyed-Omar Zaraei
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu, 02792, Republic of Korea; University of Science & Technology (UST), Daejeon, Yuseong-gu, 34113, Republic of Korea
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt
| | - Se-In Choi
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju, 54907, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju, 54907, Republic of Korea
| | - Kwan Hyi Lee
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Chang-Hyun Oh
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seoul, Seongbuk-gu, 02792, Republic of Korea; University of Science & Technology (UST), Daejeon, Yuseong-gu, 34113, Republic of Korea.
| |
Collapse
|