1
|
Han S, Ma H, Wu Y, Wang C, Li Y, Li Q, Cheng Z. Andrastin-type meroterpenoids, α-pyrone polyketides, and sesquicarane derivatives from Penicillium sp., a fungus isolated from Pinus koraiensis seed. PHYTOCHEMISTRY 2024; 225:114202. [PMID: 38944099 DOI: 10.1016/j.phytochem.2024.114202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
The genus Penicillium has provided us with the household antibiotic penicillin and the well-known lipid-lowering agent mevastatin. The strain Penicillium sp. SZ-1 was found to grow vigorously in an intact Pinus koraiensis seed, it is inferred that the strain may develop unique mechanisms associated with the biosynthesis of rare metabolites. Further fermentation of the strain on solid rice medium yielded thirteen undescribed compounds, including three andrastin-type meroterpenoids (1-3), two α-pyrone polyketides (4 and 5), and eight sesquicarane derivatives (6-13), along with seven known compounds (14-20). Their structures were determined by detailed analysis of the spectroscopic and spectrometric data (NMR and HRESIMS), in addition to comparisons of the experimental and calculated ECD data for absolute configurational assignments. The hemiacetal moiety in compounds 1 and 2 and the 3α-hydroxy group in compound 3 were rarely found in the andrastin-type meroterpenoid family. The sesquicaranes belong to a small group of sesquiterpenoid that are rarely reported. Bioassay study showed that compound 1 exhibited inhibitory effects against Staphylococcus aureus ATCC 29213 and Escherichia coli ATCC 25922 with MIC values of 64 and 32 μg/mL, respectively. In addition, compounds 1 and 3 displayed weak DPPH radical scavenging activities. The andrastins and sesquicaranes in this study enriched the structural diversity of these classes of terpenoids. Of note, this study is the first report on the metabolites of a fungus isolated from P. koraiensis seed.
Collapse
Affiliation(s)
- Shouye Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, PR China; Center of Scientific Research and Experiment, Nanyang Medical College, Nanyang, 473061, PR China; School of Pharmacy, Henan University, Kaifeng, 475004, PR China
| | - Huabin Ma
- Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, PR China
| | - Yumeng Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, PR China
| | - Chunying Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, PR China
| | - Yuanli Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, PR China
| | - Qin Li
- School of Pharmacy, Henan University, Kaifeng, 475004, PR China
| | - Zhongbin Cheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, PR China.
| |
Collapse
|
2
|
Tang XL, Ran K, Wang BC, Qu XY, Chen ZZ, An YN. Macrophorins H and L, two new HMG-conjugate macrophorins from rihzospheric Penicillium sp. NX-05-G-3. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1041-1048. [PMID: 38758009 DOI: 10.1080/10286020.2024.2347530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Macrophorins H (4) and L (5), two rare HMG-conjugate macrophorins along with three known macrophorins (1-3), three DMOA-derived meroterpenoids (6-8) and two ergosterol derivates (9-10) were isolated from sterilized rice medium cultured Penicillium sp. NX-05-G-3. Their structures were elucidated by 1D and 2D NMR. The cytotoxicities of all compounds were evaluated, and compounds 1 and 2 showed extensive cytotoxicity against human cancer cell lines Hela, SCC15, MDA-MB-453 and A549, with IC50 values ranging from 17.6 to 32.8 µM.
Collapse
Affiliation(s)
- Xiao-Long Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Kai Ran
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Bo-Chu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xian-You Qu
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Zhong-Zhu Chen
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Ya-Nan An
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
3
|
Zhu CS, Li XM, Yang SQ, Liu YW, Wang BG, Li X. New Hydroxyphenylacetic Acids and α-Pyrone Derivative from the Deep-Sea Cold Seep Sediment-Derived Fungus Penicillium corylophilum CS-682. Chem Biodivers 2024; 21:e202400584. [PMID: 38544421 DOI: 10.1002/cbdv.202400584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 04/18/2024]
Abstract
Two pairs of new enantiomeric hydroxyphenylacetic acid derivatives, (±)-corylophenols A and B ((±)-1 and (±)-2), a new α-pyrone analogue, corylopyrone A (3), and six andrastin-type meroterpenoids (4-9) were isolated and identified from the deep-sea cold-seep sediment-derived fungus Penicillium corylophilum CS-682. Their structures and stereo configurations were determined by detailed spectroscopic analysis of NMR and MS data, chiral HPLC analysis, J-based configuration analysis, and quantum chemical calculations of ECD, specific rotation, and NMR (with DP4+ probability analysis). Compound 3 showed inhibitory activity against some strains of pathogenic bacteria.
Collapse
Affiliation(s)
- Chi-Sheng Zhu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China Tel
- University of Chinese Academy of Sciences, Yuquan Road 19 A, Beijing, 100049, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China Tel
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China Tel
- University of Chinese Academy of Sciences, Yuquan Road 19 A, Beijing, 100049, China
| | - Yi-Wei Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China Tel
- University of Chinese Academy of Sciences, Yuquan Road 19 A, Beijing, 100049, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China Tel
- University of Chinese Academy of Sciences, Yuquan Road 19 A, Beijing, 100049, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China Tel
- University of Chinese Academy of Sciences, Yuquan Road 19 A, Beijing, 100049, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, China
| |
Collapse
|
4
|
Mei RF, Su J, Hu GX, Yang RD, He BJ, Shi YX, Cai L, Ding ZT. Accumulation of antitumor polyketides by fermentation of Rubus delavayi Franch. with Clonostachys rogersoniana. Fitoterapia 2024; 175:105917. [PMID: 38508501 DOI: 10.1016/j.fitote.2024.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/23/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
The aim of this work is to explore the effects of herbal medicine on secondary metabolites of microorganisms during fermentation. Clonostachys rogersoniana was found to metabolize only small amounts of polyketide glycosides rogerson B and C on fresh potatoes, but after replacing the medium to the medicinal plant Rubus delavayi Franch., the type and content of the metabolized polyketones showed significant changes. The sugars and glycosides in R. delavayi are probably responsible for the changes in secondary metabolites. Six polyketide glycosides including a new metabolite, rogerson F, and two potential antitumor compounds, TMC-151C and TMC-151D, were isolated from the extract of R. delavayi fermented by C. rogersoniana. In addition, 13C labeling experiments were used to trace the biosynthesis process of these compounds. TMC-151C and TMC-151D showed significant cytotoxic activity against PANC-1, K562 and HCT116 cancer cells but had no obvious cytotoxic activity against BEAS-2B human normal lung epithelial cells. The yields of TMC-151C and TMC-151D reached 14.37 ± 1.52 g/kg and 1.98 ± 0.43 g/kg, respectively, after fermentation at 28 °C for 30 days. This is the first study to confirm that herbal medicine can induce microbes to metabolize active compounds. And the technology of fermenting medicinal materials can bring more economic value to medicinal plants.
Collapse
Affiliation(s)
- Rui-Feng Mei
- Functional Molecules Analysis and Biotransformation key laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Jia Su
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Guo-Xian Hu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Rui-Dang Yang
- Functional Molecules Analysis and Biotransformation key laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Bi-Jian He
- Functional Molecules Analysis and Biotransformation key laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Ya-Xian Shi
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Le Cai
- Functional Molecules Analysis and Biotransformation key laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| | - Zhong-Tao Ding
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China.
| |
Collapse
|
5
|
Lv F, Zeng Y. Novel Bioactive Natural Products from Marine-Derived Penicillium Fungi: A Review (2021-2023). Mar Drugs 2024; 22:191. [PMID: 38786582 PMCID: PMC11122844 DOI: 10.3390/md22050191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Marine-derived Penicillium fungi are productive sources of structurally unique and diverse bioactive secondary metabolites, representing a hot topic in natural product research. This review describes structural diversity, bioactivities and statistical research of 452 new natural products from marine-derived Penicillium fungi covering 2021 to 2023. Sediments are the main sources of marine-derived Penicillium fungi for producing nearly 56% new natural products. Polyketides, alkaloids, and terpenoids displayed diverse biological activities and are the major contributors to antibacterial activity, cytotoxicity, anti-inflammatory and enzyme inhibitory capacities. Polyketides had higher proportions of new bioactive compounds in new compounds than other chemical classes. The characteristics of studies in recent years are presented.
Collapse
Affiliation(s)
- Fang Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China;
| | - Yanbo Zeng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
6
|
Yan LH, Li PH, Li XM, Yang SQ, Liu KC, Zhang Y, Wang BG, Li X. Bialorastins A-F, highly oxygenated and polycyclic andrastin-type meroterpenoids with proangiogenic activity from the deep-sea cold-seep-derived fungus Penicillium bialowiezense CS-283. Bioorg Chem 2024; 143:107073. [PMID: 38176375 DOI: 10.1016/j.bioorg.2023.107073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Six new highly oxygenated and polycyclic andrastin-type meroterpenoids, namely, bialorastins A-F (1-6), were discovered from the culture of Penicillium bialowiezense CS-283, a fungus isolated from the deep-sea cold seep squat lobster Shinkaia crosnieri. The planar structures and absolute configurations of these compounds were determined by detailed analysis of spectroscopic data, single crystal X-ray diffraction, and TDDFT-ECD calculations. Structurally, bialorastin A (1) represents a rare 17-nor-andrastin that possesses an unusual 2-oxaspiro[4.5]decane-1,4-dione moiety with a unique 6/6/6/6/5 polycyclic system, while bialorastin B (2) is also a 17-nor-andrastin featuring a gem-propane-1,2-dione moiety. Additionally, bialorastins C-E (3-5) possess a 6/6/6/6/5/5 fused hexacyclic skeleton, characterized by distinctive 3,23-acetal/lactone-bridged functionalities. All isolated compounds were evaluated for their proangiogenic activities in transgenic zebrafish. Compound 3 exhibited significant proangiogenic activity, which notably increased the number and length of intersegmental blood vessels in model zebrafish in a dose-dependent manner at concentrations of 20 and 40 μM. On a molecular scale, the tested compounds were modeled through molecular docking to have insight into the interactions with the possible target VEGFR2. Mechanistically, RT-qPCR results revealed that compound 3 could promote angiogenesis via activating VEGFR2 and subsequently activating the downstream PI3K/AKT and MAPK signaling pathways. These findings indicate that 3 could be a potential lead compound for developing angiogenesis agents.
Collapse
Affiliation(s)
- Li-Hong Yan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Pei-Hai Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jingshi East Road 28789, Jinan 250103, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
| | - Ke-Chun Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jingshi East Road 28789, Jinan 250103, China
| | - Yun Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jingshi East Road 28789, Jinan 250103, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China.
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao 266237, China.
| |
Collapse
|
7
|
Zhu Z, Yang C, Keyhani NO, Liu S, Pu H, Jia P, Wu D, Stevenson PC, Fernández-Grandon GM, Pan J, Chen Y, Guan X, Qiu J. Characterization of Terpenoids from the Ambrosia Beetle Symbiont and Laurel Wilt Pathogen Harringtonia lauricola. J Fungi (Basel) 2023; 9:1175. [PMID: 38132776 PMCID: PMC10744799 DOI: 10.3390/jof9121175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Little is known concerning terpenoids produced by members of the fungal order Ophiostomales, with the member Harringtonia lauricola having the unique lifestyle of being a beetle symbiont but potentially devastating tree pathogen. Nine known terpenoids, including six labdane diterpenoids (1-6) and three hopane triterpenes (7-9), were isolated from H. lauricola ethyl acetate (EtOAc) extracts for the first time. All compounds were tested for various in vitro bioactivities. Six compounds, 2, 4, 5, 6, 7, and 9, are described functionally. Compounds 2, 4, 5, and 9 expressed potent antiproliferative activity against the MCF-7, HepG2 and A549 cancer cell lines, with half-maximal inhibitory concentrations (IC50s) ~12.54-26.06 μM. Antimicrobial activity bioassays revealed that compounds 4, 5, and 9 exhibited substantial effects against Gram-negative bacteria (Escherichia coli and Ralstonia solanacearum) with minimum inhibitory concentration (MIC) values between 3.13 and 12.50 μg/mL. Little activity was seen towards Gram-positive bacteria for any of the compounds, whereas compounds 2, 4, 7, and 9 expressed antifungal activities (Fusarium oxysporum) with MIC values ranging from 6.25 to 25.00 μg/mL. Compounds 4, 5, and 9 also displayed free radical scavenging abilities towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide (O2-), with IC50 values of compounds 2, 4, and 6 ~3.45-14.04 μg/mL and 22.87-53.31 μg/mL towards DPPH and O2-, respectively. These data provide an insight into the biopharmaceutical potential of terpenoids from this group of fungal insect symbionts and plant pathogens.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Chenjie Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA;
| | - Sen Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Huili Pu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Peisong Jia
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Dongmei Wu
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832061, China;
| | - Philip C. Stevenson
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (P.C.S.); (G.M.F.-G.)
| | | | - Jieming Pan
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China;
| | - Yuxi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Xiayu Guan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junzhi Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| |
Collapse
|
8
|
Sun J, Yang XQ, Wan JL, Han HL, Zhao YD, Cai L, Yang YB, Ding ZT. The antifungal metabolites isolated from maize endophytic fungus Fusarium sp. induced by OSMAC strategy. Fitoterapia 2023; 171:105710. [PMID: 37866423 DOI: 10.1016/j.fitote.2023.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Six new sesquiterpenes, fusarchlamols A-F (1, 2, 4-7); one new natural product of sesquiterpenoid, methyltricinonoate (3); and ten known compounds were found from Fusarium sp. cultured in two different media by the one strain many compounds strategy. The compounds (1, 2, and 4-11) were isolated from Fusarium sp. in PDB medium, and compounds (3-5, 8, and 10-17) were discovered from Fusarium sp. in coffee medium. Additionally, the configuration of 8 was first reported in the research by Mosher's method. The structures were established by 1D, 2D NMR, mass spectrometry, calculated ECD spectra, and Mosher's method. Compounds 1, 2, 6/7, 12, and 16 indicated significant antifungal activities against the phytopathogen Alternaria alternata isolated from Coffea arabica with MICs of 1 μg/mL. The investigation on the anti-phytopathogen activity of metabolites can provide lead compounds for agrochemicals.
Collapse
Affiliation(s)
- Jing Sun
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Xue-Qiong Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Jie-Liang Wan
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Hai-Li Han
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Ying-Die Zhao
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Le Cai
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Ya-Bin Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China.
| |
Collapse
|
9
|
Yu HY, Li Y, Zhang M, Zou ZB, Hao YJ, Xie MM, Li LS, Meng DL, Yang XW. Chemical Constituents of the Deep-sea Gammarid Shrimp-Derived Fungus Penicillium citrinum XIA-16. Chem Biodivers 2023; 20:e202301507. [PMID: 37847218 DOI: 10.1002/cbdv.202301507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
One new alkaloid, (S)-2-acetamido-4-(2-(methylamino)phenyl)-4-oxobutanoic acid (1), was isolated from the deep-sea-derived Penicillium citrinum XIA-16, together with 25 known compounds including ten polyketones (2-11), eight alkaloids (12-19), six steroids (20-25), and a fatty acid (26). Their planar and relative structures were determined by an analysis of 1D and 2D nuclear magnetic resonance (NMR) as well as high resolution electrospray ionization mass spectroscopy (HR-ESI-MS) data. The absolute configuration of 1 was determined by comparison of the experimental and calculated electronic circular dichroism (ECD) spectra. Penicitrinol B (6) significantly inhibited RSL3-induced ferroptosis (EC50 =2.0 μM) by reducing lipid peroxidation and heme oxygenase 1 (HMOX1) expression. Under the concentration of 10 μM, penicitrinol A (7) was able to inhibit cuproptosis with the cell viabilities of 68.2 % compared to the negative control (copper and elesclomol) with the cell viabilities of 14.8 %.
Collapse
Affiliation(s)
- Hao-Yu Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Yan Li
- The School of Basic Medical Sciences, Fujian Medical University, 1 Xueyuan Road, Fuzhou, 350122, China
| | - Meng Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Zheng-Biao Zou
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - You-Jia Hao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Li-Sheng Li
- The School of Basic Medical Sciences, Fujian Medical University, 1 Xueyuan Road, Fuzhou, 350122, China
| | - Da-Li Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| |
Collapse
|
10
|
Chang J, Ouyang Q, Peng X, Pei J, Zhang L, Gan Y, Ruan H. Peniandrastins A-H: Andrastin-type meroterpenoids with immunosuppressive activity from a Penicillium sp. Bioorg Chem 2023; 139:106745. [PMID: 37499531 DOI: 10.1016/j.bioorg.2023.106745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Eight unreported andrastin-type meroterpenoids, namely peniandrastins A-H (1-8), along with six known analogues (9-14), were isolated from the fermentation of a soil-derived fungus Penicillium sp.sb62. Their structures with absolute configurations were elucidated by detailed analyses of the spectroscopic data and single-crystal X-ray diffraction. Compounds 1-4 belong to a rare class of 21-nor-andrastin meroterpenoids, of which 1 bears a 10-hydroperoxyl group, and 2 and 3 feature a 6/6/6/5/5 and a 6/6/6/5/6 pentacyclic systems, respectively. Compounds 5-8 are C25 andrastin-type meroterpenoids, wherein 5 features an unprecedented cyclopentan-1-keton-3-hemiacetal moiety. Additionally, the absolute configuration of compound 9 was corroborated by single-crystal X-ray crystallography for the first time. All isolates were evaluated for their immunosuppressive activities. As a result, compounds 1, 3, 4, 7-9 and 12-14 inhibited concanavalin A-induced T cell proliferation with IC50 values ranging from 7.49 to 36.52 μM, and 1-4, 6-9 and 12-14 inhibited lipopolysaccharide-induced B cell proliferation with IC50 values ranging from 6.73 to 26.27 μM. The preliminary structure-activity relationships (SARs) of those isolates were also discussed.
Collapse
Affiliation(s)
- Jinling Chang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, China
| | - Qianxi Ouyang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, China
| | - Xiaogang Peng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, China
| | - Jiao Pei
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, China
| | - Linlin Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, China; Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yutian Gan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, China
| | - Hanli Ruan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, China.
| |
Collapse
|
11
|
He ZH, Xie CL, Wu T, Zhang Y, Zou ZB, Xie MM, Xu L, Capon RJ, Xu R, Yang XW. Neotricitrinols A-C, unprecedented citrinin trimers with anti-osteoporosis activity from the deep-sea-derived Penicillium citrinum W23. Bioorg Chem 2023; 139:106756. [PMID: 37544271 DOI: 10.1016/j.bioorg.2023.106756] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Marine fungi are prolific source for the discovery of structurally diverse and bioactive molecules. In our search for new anti-osteoporosis compounds from deep-sea-derived fungi, we prioritized a fungus whose extract exhibited moderate activity and rich chemical diversity. The investigation of this strain afforded a class of citrinins, including three new citrinin trimers, neotricitrinols A-C (1-3), and three known dimeric/monomeric precursors (4-6). Neotricitrinols A-C (1-3) feature a unique octacyclic carbon scaffold among the few reported citrinin trimers with their absolute configurations established by spectroscopic analysis, theoretical-statistical approaches (GIAO-NMR, TDDFT-ECD/ORD calculations), DP4+ probability analysis as well as biogenetic consideration. A plausible biosynthetic pathway linking 1-3 from the common intermediate metabolite penicitrinol A (4) was proposed. Biologically, neotricitrinol B (2) showed potential anti-osteoporosis activity by promoting osteoblastogenesis and inhibiting adipogenic differentiation on primary bone mesenchymal stem cells, while displaying no cytotoxicity.
Collapse
Affiliation(s)
- Zhi-Hui He
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Chun-Lan Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361102, China
| | - Taizong Wu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; Institute for Molecular Bioscience, University of Queensland, Brisbane, 4072, Australia
| | - Yong Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Zheng-Biao Zou
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Lin Xu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland, Brisbane, 4072, Australia
| | - Ren Xu
- School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361102, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China.
| |
Collapse
|
12
|
Hao YJ, Zou ZB, Xie MM, Zhang Y, Xu L, Yu HY, Ma HB, Yang XW. Ferroptosis Inhibitory Compounds from the Deep-Sea-Derived Fungus Penicillium sp. MCCC 3A00126. Mar Drugs 2023; 21:md21040234. [PMID: 37103373 PMCID: PMC10144380 DOI: 10.3390/md21040234] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Two new xanthones (1 and 2) were isolated from the deep-sea-derived fungus Penicillium sp. MCCC 3A00126 along with 34 known compounds (3-36). The structures of the new compounds were established by spectroscopic data. The absolute configuration of 1 was validated by comparison of experimental and calculated ECD spectra. All isolated compounds were evaluated for cytotoxicity and ferroptosis inhibitory activities. Compounds 14 and 15 exerted potent cytotoxicity against CCRF-CEM cells, with IC50 values of 5.5 and 3.5 μM, respectively, whereas 26, 28, 33, and 34 significantly inhibited RSL3-induced ferroptosis, with EC50 values of 11.6, 7.2, 11.8, and 2.2 μM, respectively.
Collapse
Affiliation(s)
- You-Jia Hao
- College of Marine Sciences, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai 201306, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Zheng-Biao Zou
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Yong Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Lin Xu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Hao-Yu Yu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Hua-Bin Ma
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| |
Collapse
|
13
|
da Silva FMR, Paggi GM, Brust FR, Macedo AJ, Silva DB. Metabolomic Strategies to Improve Chemical Information from OSMAC Studies of Endophytic Fungi. Metabolites 2023; 13:metabo13020236. [PMID: 36837855 PMCID: PMC9961420 DOI: 10.3390/metabo13020236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Metabolomics strategies are important tools to get holistic chemical information from a system, but they are scarcely applied to endophytic fungi to understand their chemical profiles of biosynthesized metabolites. Here Penicillium sp. was cultured using One Strain Many Compounds (OSMAC) conditions as a model system to demonstrate how this strategy can help in understanding metabolic profiles and determining bioactive metabolites with the application of metabolomics and statistical analyses, as well as molecular networking. Penicillium sp. was fermented in different culture media and the crude extracts from mycelial biomass (CEm) and broth (CEb) were obtained, evaluated against bacterial strains (Staphylococcus aureus and Pseudomonas aeruginosa), and the metabolomic profiles by LC-DAD-MS were obtained and chemometrics statistical analyses were applied. The CEm and CEb extracts presented different chemical profiles and antibacterial activities; the highest activities observed were against S. aureus from CEm (MIC = 16, 64, and 128 µg/mL). The antibacterial properties from the extracts were impacted for culture media from which the strain was fermented. From the Volcano plot analysis, it was possible to determine statistically the most relevant features for the antibacterial activity, which were also confirmed from biplots of PCA as strong features for the bioactive extracts. These compounds included 75 (13-oxoverruculogen isomer), 78 (austalide P acid), 87 (austalide L or W), 88 (helvamide), 92 (viridicatumtoxin A), 96 (austalide P), 101 (dihydroaustalide K), 106 (austalide k), 110 (spirohexaline), and 112 (pre-viridicatumtoxin). Thus, these features included diketopiperazines, meroterpenoids, and polyketides, such as indole alkaloids, austalides, and viridicatumtoxin A, a rare tetracycline.
Collapse
Affiliation(s)
- Fernanda Motta Ribeiro da Silva
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Gecele Matos Paggi
- Laboratory of Ecology and Evolutionary Biology (LEBio), Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Flávia Roberta Brust
- Biofilms and Diversity Laboratory, Faculty of Pharmacy and Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Alexandre José Macedo
- Biofilms and Diversity Laboratory, Faculty of Pharmacy and Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Denise Brentan Silva
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
- Correspondence:
| |
Collapse
|
14
|
Xie MM, Jiang JY, Zou ZB, Xu L, Zhang Y, Wang CF, Liu CB, Yan QX, Liu Z, Yang XW. Chemical Constituents of the Deep-Sea-Derived Fungus Cladosporium oxysporum 170103 and Their Antibacterial Effects. Chem Biodivers 2022; 19:e202200963. [PMID: 36436828 DOI: 10.1002/cbdv.202200963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022]
Abstract
The Cladosporium fungi, one of the largest genera of dematiaceous hyphomycetes, could produce various bioactive secondary metabolites. From the AcOEt-soluble extract of Cladosporium oxysporum 170103, three new secopatulolides (1-3) and thirteen known compounds (4-16) were obtained. Their structures were established by detailed analysis of the NMR and HR-ESI-MS data. All sixteen compounds were tested for antibacterial activity against Vibrio parahemolyticus, ergosterol (10) presented moderate effect with the minimum inhibitory concentration (MIC) of 32 μM. It can destruct the membrane integrity of Vibrio parahemolyticus to change the cell shape.
Collapse
Affiliation(s)
- Ming-Min Xie
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Jia-Yang Jiang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China.,College of Life Sciences, Hainan University, 58 People's Avenue, Haikou, Hainan 570228, China
| | - Zheng-Biao Zou
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Lin Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Yong Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Chao-Feng Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Cheng-Bin Liu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Qing-Xiang Yan
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Zhu Liu
- College of Life Sciences, Hainan University, 58 People's Avenue, Haikou, Hainan 570228, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| |
Collapse
|
15
|
Zhang Y, Liu H, Chen Y, Lu X, Liu Z, Tan H, Zhang W. Cyophiobiolins A-D, ophiobolin sestertepenoids from Cytospora rhizophorae. PHYTOCHEMISTRY 2022; 203:113352. [PMID: 35988743 DOI: 10.1016/j.phytochem.2022.113352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Cyophiobiolins A-D, four unreported ophiobolin-type sesterterpenoids, were isolated from Cytospora rhizophorae A761, an endophytic fungus from Gynochthodes officinalis. The structures of these undescribed compounds were fully characterized on the basis of extensively spectroscopic data (1D, 2D NMR and HRESIMS) and single-crystal X-ray diffraction analyses. Moreover, cyophiobiolins A-D were evaluated for in vitro cytotoxic, anti-inflammatory, and antibacterial activities. Cyophiobiolins A-B showed inhibitory potency against lipopolysaccharide (LPS)-induced oxide production with IC50 values of 66.3 μM and 53.3 μM, respectively.
Collapse
Affiliation(s)
- Yanjiang Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiuxiang Lu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoming Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Haibo Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
16
|
Shi JY, Wang CF, Xie MM, Hao YJ, Wang N, Ma H, Yang XW. Brefeldin A from the Deep-Sea-Derived Fungus Fusarium sp. Targets on RIPK3 to Inhibit TNFα-Induced Necroptosis. Chem Biodivers 2022; 19:e202200696. [PMID: 36000162 DOI: 10.1002/cbdv.202200696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022]
Abstract
From the deep-sea-derived Fusarium sp. ZEN-48, four known compounds were obtained. Their structures were established by extensive analyses of the NMR, HRESIMS, and the X-ray crystal-lographic data as brefeldin A (BFA, 1), brevianamide F (2), N-acetyltryptamine (3), and (+)-diaporthin (4). Although BFA was extensively investigated for its potent bioactivities, its role on TNFα-induced necroptosis was incompletely understood. In this study, BFA showed significant inhibition on TNFα-induced necroptosis by disrupting the necrosome formation and suppressing the phosphorylation of RIPK3 and MLKL (IC50 = 0.5 μM). While, it had no effect on TNFα-induced NF-κB/MAPKs activation and apoptosis. The finding raised significant implications of BFA for necroptosis-related inflammatory disease therapy and new drug development from marine fungi.
Collapse
Affiliation(s)
- Jia-Yi Shi
- Ningbo University, Institute of Drug Discovery Technology, 818 Fenghua Road, Ningbo, CHINA
| | - Chao-Feng Wang
- Third Institute of Oceanography Ministry of Natural Resources, Key Laboratory of Marine Biogenetic Resources, Daxue Road, 361005, Xiamen, CHINA
| | - Ming-Min Xie
- Third Institute of Oceanography Ministry of Natural Resources, Key Laboratory of Marine Biogenetic Resources, 184 Daxue Road, 361005, Xiamen, CHINA
| | - You-Jia Hao
- Third Institute of Oceanography Ministry of Natural Resources, Key Laboratory of Marine Biogenetic Resources, 184 Daxue Road, Xiamen, CHINA
| | - Ning Wang
- Ningbo University, Institute of Drug Discovery Technology, 818 Fenghua Road, Xiamen, CHINA
| | - Huabin Ma
- Ningbo University, Institute of Drug Discovery Technology, 818 Fenghua Road, Xiamen, CHINA
| | - Xian-Wen Yang
- Third Institute of Oceanography, Ministry of Natural Resources, Key Laboratory of Marine Biogenetic Resources, 184 Daxue Road, 361005, Xiamen, CHINA
| |
Collapse
|
17
|
Wu YM, Yang XQ, Li SY, Chen JX, Wang T, Sun J, Yang YB, Ding ZT. Chlorinated Cyclopentene Derivatives and Antifungal Activities from Periconia sp. Induced by the One Strain Many Compounds Strategy and Host Plant Culture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8653-8661. [PMID: 35791917 DOI: 10.1021/acs.jafc.2c02480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Eleven new chlorinated cyclopentene derivatives, periconsins A-K, and a new diketopiperazine, periconzin, were found from Periconia sp. cultured in three different media by the one strain many compounds strategy. Additionally, the C-1 methyl hydroxylation of chlorinated cyclopentene was found for the first time in the host plant culture. The structures were identified by extensive spectroscopic analyses, electronic circular dichroism (ECD) and 13C NMR calculations, and single-crystal X-ray diffraction. Compounds 3, 5, 7-11, 15, and 17 showed significant antifungal activities against the plant pathogens Periconia sp., Altemaria sp., and Nigrospora oryzae with MICs ≤2 μg/mL. Other compounds had antifungal activities with MICs ≤8 μg/mL. The antifungal structure-activity relationship of these metabolites indicated that the chlorine at C-5 can increase the activity, but the hydroxy group at C-1 lowered the activity.
Collapse
Affiliation(s)
- Ya-Mei Wu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
| | - Xue-Qiong Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
| | - Shi-Yu Li
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
| | - Jing-Xin Chen
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
| | - Ting Wang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
| | - Jing Sun
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
| | - Ya-Bin Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, 2nd Cuihu North Road, Kunming 650091, China
- College of Pharmacy, Dali University, Dali 671003, People's Republic of China
| |
Collapse
|
18
|
|
19
|
Hu HQ, Li YH, Fan ZW, Yan WL, He ZH, Zhong TH, Gai YB, Yang XW. Anti-HIV Compounds from the Deep-Sea-Derived Fungus Chaetomium globosum. Chem Biodivers 2021; 19:e202100804. [PMID: 34799976 DOI: 10.1002/cbdv.202100804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/19/2021] [Indexed: 11/11/2022]
Abstract
Chemical investigation on the deep-sea-derived fungus Chaetomium globosum led to the isolation of nine compounds. By extensive analyses of the 1D and 2D NMR as well as HR-ESI-MS spectra, their structures were elucidated as xylariol A (1), 1,3-dihydro-4,5,6-trihydroxy-7-methylisobenzofuran (2), epicoccone B (3), epicoccolide B (4), chaetoglobosin G (5), chaetoglobosin Fex (6), cochliodone A (7), cochliodone B (8), and chaetoviridin A (9), assorting as four phenolics (1-4), two cytochalosans (5-6), and three azaplilones (7-9). Compounds 1-3 were firstly reported from C. globosum. Under the concentrations of 20 μg/mL, 1, 2, and 3 exhibited potent in vitro anti-HIV activity with the inhibition rates of 70 %, 75 %, and 88 %, respectively.
Collapse
Affiliation(s)
- Hong-Qiang Hu
- The Emergency Department, Army 73rd Group Military Hospital, Chenggong Hospital, Xiamen University), Xiamen, 361003, China
| | - Yan-Hui Li
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China.,Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Zuo-Wang Fan
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Wei-Li Yan
- The Emergency Department, Army 73rd Group Military Hospital, Chenggong Hospital, Xiamen University), Xiamen, 361003, China
| | - Zhi-Hui He
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Tian-Hua Zhong
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Ying-Bao Gai
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| |
Collapse
|
20
|
He ZH, Wu J, Xu L, Hu MY, Xie MM, Hao YJ, Li SJ, Shao ZZ, Yang XW. Chemical Constituents of the Deep-Sea-Derived Penicillium solitum. Mar Drugs 2021; 19:580. [PMID: 34677479 PMCID: PMC8540044 DOI: 10.3390/md19100580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
A systematic chemical investigation of the deep-sea-derived fungus Penicillium solitum MCCC 3A00215 resulted in the isolation of one novel polyketide (1), two new alkaloids (2 and 3), and 22 known (4-25) compounds. The structures of the new compounds were established mainly on the basis of exhaustive analysis of 1D and 2D NMR data. Viridicatol (13) displayed moderate anti-tumor activities against PANC-1, Hela, and A549 cells with IC50 values of around 20 μM. Moreover, 13 displayed potent in vitro anti-food allergic activity with an IC50 value of 13 μM, compared to that of 92 μM for the positive control, loratadine, while indole-3-acetic acid methyl ester (9) and penicopeptide A (10) showed moderate effects (IC50 = 50 and 58 μM, respectively).
Collapse
Affiliation(s)
- Zhi-Hui He
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Z.-H.H.); (L.X.); (M.-Y.H.); (M.-M.X.); (Y.-J.H.); (S.-J.L.); (Z.-Z.S.)
| | - Jia Wu
- Yanjing Medical College, Capital Medical University, 4 Dadong Road, Beijing 101300, China;
| | - Lin Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Z.-H.H.); (L.X.); (M.-Y.H.); (M.-M.X.); (Y.-J.H.); (S.-J.L.); (Z.-Z.S.)
| | - Man-Yi Hu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Z.-H.H.); (L.X.); (M.-Y.H.); (M.-M.X.); (Y.-J.H.); (S.-J.L.); (Z.-Z.S.)
| | - Ming-Ming Xie
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Z.-H.H.); (L.X.); (M.-Y.H.); (M.-M.X.); (Y.-J.H.); (S.-J.L.); (Z.-Z.S.)
| | - You-Jia Hao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Z.-H.H.); (L.X.); (M.-Y.H.); (M.-M.X.); (Y.-J.H.); (S.-J.L.); (Z.-Z.S.)
| | - Shu-Jin Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Z.-H.H.); (L.X.); (M.-Y.H.); (M.-M.X.); (Y.-J.H.); (S.-J.L.); (Z.-Z.S.)
| | - Zong-Ze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Z.-H.H.); (L.X.); (M.-Y.H.); (M.-M.X.); (Y.-J.H.); (S.-J.L.); (Z.-Z.S.)
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Z.-H.H.); (L.X.); (M.-Y.H.); (M.-M.X.); (Y.-J.H.); (S.-J.L.); (Z.-Z.S.)
| |
Collapse
|
21
|
Wang CF, Huang XF, Xiao HX, Hao YJ, Xu L, Yan QX, Zou ZB, Xie CL, Xu YQ, Yang XW. Chemical Constituents of the Marine Fungus Penicillium sp. MCCC 3A00228. Chem Biodivers 2021; 18:e2100697. [PMID: 34585839 DOI: 10.1002/cbdv.202100697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/10/2021] [Indexed: 01/24/2023]
Abstract
One new (d-arabinitol-anofinicate, 1) and fourteen known (2-15) compounds were isolated from the marine Penicillium sp. MCCC 3A00228. The structure of the new compound was established mainly by extensive spectroscopic analyses. Compound 1 exhibited weak transcriptional effect on Nur77. While compound 13 showed moderate in vitro anti-proliferative effect against QGY7701, H1299, and HCT116 tumor cells with IC50 values of 21.2 μM, 18.2 μM, and 17.6 μM, respectively.
Collapse
Affiliation(s)
- Chao-Feng Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Meiling Avenue, Nanchang, 330004, China.,Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Xiao-Fang Huang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Meiling Avenue, Nanchang, 330004, China
| | - Hong-Xiu Xiao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - You-Jia Hao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Lin Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Qing-Xiang Yan
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Zheng-Biao Zou
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Chun-Lan Xie
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Yan-Qin Xu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Meiling Avenue, Nanchang, 330004, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| |
Collapse
|
22
|
Xing CP, Chen D, Xie CL, Liu Q, Zhong TH, Shao Z, Liu G, Luo LZ, Yang XW. Anti-Food Allergic Compounds from Penicillium griseofulvum MCCC 3A00225, a Deep-Sea-Derived Fungus. Mar Drugs 2021; 19:md19040224. [PMID: 33923496 PMCID: PMC8073018 DOI: 10.3390/md19040224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Ten new (1–10) and 26 known (11–36) compounds were isolated from Penicillium griseofulvum MCCC 3A00225, a deep sea-derived fungus. The structures of the new compounds were determined by detailed analysis of the NMR and HRESIMS spectroscopic data. The absolute configurations were established by X-ray crystallography, Marfey’s method, and the ICD method. All isolates were tested for in vitro anti-food allergic bioactivities in immunoglobulin (Ig) E-mediated rat basophilic leukemia (RBL)-2H3 cells. Compound 13 significantly decreased the degranulation release with an IC50 value of 60.3 μM, compared to that of 91.6 μM of the positive control, loratadine.
Collapse
Affiliation(s)
- Cui-Ping Xing
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources,184 Daxue Road, Xiamen 361005, China; (C.-P.X.); (C.-L.X.); (T.-H.Z.); (Z.S.)
| | - Dan Chen
- Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen Medical College, 1999 Guankouzhong Road, Xiamen 361023, China;
| | - Chun-Lan Xie
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources,184 Daxue Road, Xiamen 361005, China; (C.-P.X.); (C.-L.X.); (T.-H.Z.); (Z.S.)
| | - Qingmei Liu
- College of Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen 361021, China; (Q.L.); (G.L.)
| | - Tian-Hua Zhong
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources,184 Daxue Road, Xiamen 361005, China; (C.-P.X.); (C.-L.X.); (T.-H.Z.); (Z.S.)
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources,184 Daxue Road, Xiamen 361005, China; (C.-P.X.); (C.-L.X.); (T.-H.Z.); (Z.S.)
| | - Guangming Liu
- College of Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen 361021, China; (Q.L.); (G.L.)
| | - Lian-Zhong Luo
- Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen Medical College, 1999 Guankouzhong Road, Xiamen 361023, China;
- Correspondence: (L.-Z.L.); (X.-W.Y.); Tel.: +86-592-636-5150 (L.-Z.L.); +86-592-219-5319 (X.-W.Y.)
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources,184 Daxue Road, Xiamen 361005, China; (C.-P.X.); (C.-L.X.); (T.-H.Z.); (Z.S.)
- Correspondence: (L.-Z.L.); (X.-W.Y.); Tel.: +86-592-636-5150 (L.-Z.L.); +86-592-219-5319 (X.-W.Y.)
| |
Collapse
|
23
|
Li XD, Su JC, Jiang BZ, Li YL, Guo YQ, Zhang P. Janthinoid A, an unprecedented tri- nor-meroterpenoid with highly modified bridged 4a,1-(epoxymethano)phenanthrene scaffold, produced by the endophyte of Penicillium janthinellum TE-43. Org Chem Front 2021. [DOI: 10.1039/d1qo01066b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Janthinoid A (1), an unprecedented C22 meroterpenoid featuring a highly modified bridged 4a,1-(epoxymethano)phenanthrene scaffold, was produced by Penicillium janthinellum.
Collapse
Affiliation(s)
- Xiao-Dong Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | - Jun-Cheng Su
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Bao-Zhen Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Ye-Ling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, China
| | - Yuan-Qiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, China
| | - Peng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|