1
|
Liang X, Chen R, Wang C, Wang Y, Zhang J. Targeting HSP90 for Cancer Therapy: Current Progress and Emerging Prospects. J Med Chem 2024; 67:15968-15995. [PMID: 39256986 DOI: 10.1021/acs.jmedchem.4c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Heat shock protein 90 (HSP90), a highly conserved member of the heat shock protein family, regulates various proteins and signaling pathways involved in cancer, making it a promising target for cancer therapy. Traditional HSP90 inhibitors have demonstrated significant antitumor potential in preclinical trials, with over 20 compounds advancing to clinical trials and showing promising results. However, the limited clinical efficacy and shared toxicity of these inhibitors restrict their further clinical use. Encouragingly, developing novel inhibitors using conventional medicinal chemistry approaches─such as selective inhibitors, dual inhibitors, protein-protein interaction inhibitors, and proteolysis-targeting chimeras─is expected to address these challenges. Notably, the selective inhibitor TAS-116 has already been successfully marketed. In this Perspective, we summarize the structure, biological functions, and roles of HSP90 in cancer, analyze the clinical status of HSP90 inhibitors, and highlight the latest advancements in novel strategies, offering insights into their future development.
Collapse
Affiliation(s)
- Xinqi Liang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Ruixian Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Chengdi Wang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yuxi Wang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212 Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory and Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212 Sichuan, China
| |
Collapse
|
2
|
Li Y, Dong J, Qin JJ. Small molecule inhibitors targeting heat shock protein 90: An updated review. Eur J Med Chem 2024; 275:116562. [PMID: 38865742 DOI: 10.1016/j.ejmech.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
As a molecular chaperone, heat shock protein 90 (HSP90) plays important roles in the folding, stabilization, activation, and degradation of over 500 client proteins, and is extensively involved in cell signaling, proliferation, and survival. Thus, it has emerged as an important target in a variety of diseases, including cancer, neurodegenerative diseases, and viral infections. Therefore, targeted inhibition of HSP90 provides a valuable and promising therapeutic strategy for the treatment of HSP90-related diseases. This review aims to systematically summarize the progress of research on HSP90 inhibitors in the last five years, focusing on their structural features, design strategies, and biological activities. It will refer to the natural products and their derivatives (including novobiocin derivatives, deguelin derivatives, quinone derivatives, and terpenoid derivatives), and to synthetic small molecules (including resorcinol derivatives, pyrazoles derivatives, triazole derivatives, pyrimidine derivatives, benzamide derivatives, benzothiazole derivatives, and benzofuran derivatives). In addition, the major HSP90 small-molecule inhibitors that have moved into clinical trials to date are also presented here.
Collapse
Affiliation(s)
- Yulong Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinyun Dong
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
3
|
Li H, Li Y, Zhang L, Wang N, Lu D, Tang D, Lv Y, Zhang J, Yan H, Gong H, Zhang M, Nie K, Hou Y, Yu Y, Xiao H, Liu C. Prodrug-inspired adenosine triphosphate-activatable celastrol-Fe(III) chelate for cancer therapy. SCIENCE ADVANCES 2024; 10:eadn0960. [PMID: 38996025 PMCID: PMC11244545 DOI: 10.1126/sciadv.adn0960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Celastrol (CEL), an active compound isolated from the root of Tripterygium wilfordii, exhibits broad anticancer activities. However, its poor stability, narrow therapeutic window and numerous adverse effects limit its applications in vivo. In this study, an adenosine triphosphate (ATP) activatable CEL-Fe(III) chelate was designed, synthesized, and then encapsulated with a reactive oxygen species (ROS)-responsive polymer to obtain CEL-Fe nanoparticles (CEL-Fe NPs). In normal tissues, CEL-Fe NPs maintain structural stability and exhibit reduced systemic toxicity, while at the tumor site, an ATP-ROS-rich tumor microenvironment, drug release is triggered by ROS, and antitumor potency is restored by competitive binding of ATP. This intelligent CEL delivery system improves the biosafety and bioavailability of CEL for cancer therapy. Such a CEL-metal chelate strategy not only mitigates the challenges associated with CEL but also opens avenues for the generation of CEL derivatives, thereby expanding the therapeutic potential of CEL in clinical settings.
Collapse
Affiliation(s)
- Hanrong Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yifan Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lingpu Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physical and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Nan Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Lu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physical and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Yitong Lv
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinbo Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Heben Yan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - He Gong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing 102206,China
| | - Kaili Nie
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physical and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Chaoyong Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Xie X, Zhang N, Li X, Huang H, Peng C, Huang W, Foster LJ, He G, Han B. Small-molecule dual inhibitors targeting heat shock protein 90 for cancer targeted therapy. Bioorg Chem 2023; 139:106721. [PMID: 37467620 DOI: 10.1016/j.bioorg.2023.106721] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Heat shock protein 90, also known as Hsp90, is an extensively preserved molecular chaperone that performs a critical function in organizing various biological pathways and cellular operations. As a potential drug target, Hsp90 is closely linked to cancer. Hsp90 inhibitors are a class of drugs that have been extensively studied in preclinical models and have shown promise in a variety of diseases, especially cancer. However, Hsp90 inhibitors have encountered several challenges in clinical development, such as low efficacy, toxicity, or drug resistance, few Hsp90 small molecule inhibitors have been approved worldwide. Nonetheless, combining Hsp90 inhibitors with other tumor inhibitors, such as HDAC inhibitors, tubulin inhibitors, and Topo II inhibitors, has been shown to have synergistic antitumor effects. Consequently, the development of Hsp90 dual-target inhibitors is an effective strategy in cancer treatment, as it enhances potency while reducing drug resistance. This article provides an overview of Hsp90's domain structure and biological functions, as well as a discussion of the design, discovery, and structure-activity relationships of Hsp90 dual inhibitors, aiming to provide insights into clinical drug research from a medicinal chemistry perspective and discover novel Hsp90 dual inhibitors.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Dermatology & Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - He Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada.
| | - Gu He
- Department of Dermatology & Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Sukumaran S, Tan M, Ben-Uliel SF, Zhang H, De Zotti M, Chua MS, So SK, Qvit N. Rational design, synthesis and structural characterization of peptides and peptidomimetics to target Hsp90/Cdc37 interaction for treating hepatocellular carcinoma. Comput Struct Biotechnol J 2023; 21:3159-3172. [PMID: 37304004 PMCID: PMC10250827 DOI: 10.1016/j.csbj.2023.05.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Heat shock protein 90 (Hsp90) and cell division cycle 37 (Cdc37) work together as a molecular chaperone complex to regulate the activity of a multitude of client protein kinases. These kinases belong to a wide array of intracellular signaling networks that mediate multiple cellular processes including proliferation. As a result, Hsp90 and Cdc37 represent innovative therapeutic targets in various cancers (such as leukemia, multiple myeloma, and hepatocellular carcinoma (HCC)) in which their expression levels are elevated. Conventional small molecule Hsp90 inhibitors act by blocking the conserved adenosine triphosphate (ATP) binding site. However, by targeting less conserved sites in a more specific manner, peptides and peptidomimetics (modified peptides) hold potential as more efficacious and less toxic alternatives to the conventional small molecule inhibitors. Using a rational approach, we herein developed bioactive peptides targeting Hsp90/Cdc37 interaction. A six amino acid linear peptide derived from Cdc37, KTGDEK, was designed to target Hsp90. We used in silico computational docking to first define its mode of interaction, and binding orientation, and then conjugated the peptide with a cell penetrating peptide, TAT, and a fluorescent dye to confirm its ability to colocalize with Hsp90 in HCC cells. Based on the parent linear sequence, we developed a peptidomimetics library of pre-cyclic and cyclic derivatives. These peptidomimetics were evaluated for their binding affinity to Hsp90, and bioactivity in HCC cell lines. Among them, a pre-cyclic peptidomimetic demonstrates high binding affinity and bioactivity in HCC cells, causing reduced cell proliferation that is associated with induction of cell apoptosis, and down-regulation of phosphorylated MEK1/2. Overall, this generalized approach of rational design, structural optimization, and cellular validation of 'drug-like' peptidomimetics against Hsp90/Cdc37 offers a feasible and promising way to design novel therapeutic agents for malignancies and other diseases that are dependent on this molecular chaperone complex.
Collapse
Affiliation(s)
- Surya Sukumaran
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel
| | - Mingdian Tan
- Asian Liver Center, Department of Surgery, Stanford University School of Medicine, 1201 Welch Road, Palo Alto, CA 94305, USA
| | - Shulamit Fluss Ben-Uliel
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel
| | - Hui Zhang
- Asian Liver Center, Department of Surgery, Stanford University School of Medicine, 1201 Welch Road, Palo Alto, CA 94305, USA
| | - Marta De Zotti
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Mei-Sze Chua
- Asian Liver Center, Department of Surgery, Stanford University School of Medicine, 1201 Welch Road, Palo Alto, CA 94305, USA
| | - Samuel K. So
- Asian Liver Center, Department of Surgery, Stanford University School of Medicine, 1201 Welch Road, Palo Alto, CA 94305, USA
| | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel
| |
Collapse
|
6
|
Li N, Li C, Zhang J, Jiang Q, Wang Z, Nie S, Gao Z, Li G, Fang H, Ren S, Li X. Discovery of semisynthetic celastrol derivatives exhibiting potent anti-ovarian cancer stem cell activity and STAT3 inhibition. Chem Biol Interact 2022; 366:110172. [PMID: 36096161 DOI: 10.1016/j.cbi.2022.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
The hallmark of ovarian cancer is its high mortality rate attributed to the existence of cancer stem cells (CSCs) subpopulations which result in therapy recurrence and metastasis. A series of C-29-substituted and/or different A/B ring of celastrol derivatives were synthesized and displayed potential inhibition against ovarian cancer cells SKOV3, A2780 and OVCAR3. Among them, compound 6c exhibited the most potent anti-proliferative activity and selectivity, gave superior anti-CSC effects through inhibition of the sphere formation and downregulation of the percentage of CD44+CD24- and ALDH+ cells. Further mechanism research demonstrated that compound 6c could attenuate the expression of STAT3 and p-STAT3. The results suggested that the inhibition of celastrol derivative 6c on ovarian cancer cells may be related to resistance to cancer stem-like characters and regulation of STAT3 pathway.
Collapse
Affiliation(s)
- Na Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Chaobo Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Juan Zhang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Qian Jiang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Zhaoxue Wang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Shaozhen Nie
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Zhenzhen Gao
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Guangyao Li
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China
| | - Hao Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Shaoda Ren
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China.
| | - Xiaojing Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
7
|
Lei ZC, Li N, Yu NR, Ju W, Sun XN, Zhang XL, Dong HJ, Sun JB, Chen L. Design and Synthesis of Novel Celastrol Derivatives as Potential Anticancer Agents against Gastric Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2022; 85:1282-1293. [PMID: 35536757 DOI: 10.1021/acs.jnatprod.1c01236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gastric cancer (GC) is a common malignant disease worldwide, and finding novel agents and strategies for the treatment of GC are of urgent need. Celastrol (CEL) is a well-known natural product with antineoplastic activity. In this study, pyrazole analogues were introduced at the C-29 position of CEL. A total of 24 new derivatives were designed, synthesized, and evaluated for their mechanism and antitumor activity in vitro and in vivo. Among them, compound 21 exhibited the best activity against BGC-823 cells (IC50 = 0.21 ± 0.01 μM). Further biological studies showed that 21 significantly raised the reactive oxygen species (ROS) levels to activate the apoptotic pathway, causing mitochondrial dysfunction in BGC-823 cells. In addition, 21 also arrested cells in the G2/M phase to induce tumor cell apoptosis. In a nude mouse tumor xenograft model, 21 exhibited a better tumor inhibition rate (89.85%) than CEL (inhibition rate 76.52%). Taken together, the present study has provided an anticancer lead compound candidate, 21, and has revealed that increased ROS generation may be an effective strategy in the treatment of GC.
Collapse
Affiliation(s)
- Zhi-Chao Lei
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Na Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science & Technology, 26 Yuxiang Street, Hebei 050018, People's Republic of China
| | - Nai-Rong Yu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Wei Ju
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Xiao-Na Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Xue-Ling Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Hai-Juan Dong
- The Public Laboratory Platform, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jian-Bo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, Yunnan, People's Republic of China
| |
Collapse
|
8
|
Scaffold hopping of celastrol provides derivatives containing pepper ring, pyrazine and oxazole substructures as potent autophagy inducers against breast cancer cell line MCF-7. Eur J Med Chem 2022; 234:114254. [DOI: 10.1016/j.ejmech.2022.114254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023]
|
9
|
Li N, Xu M, Zhang L, Lei Z, Chen C, Zhang T, Chen L, Sun J. Discovery of Novel Celastrol-Imidazole Derivatives with Anticancer Activity In Vitro and In Vivo. J Med Chem 2022; 65:4578-4589. [PMID: 35238566 DOI: 10.1021/acs.jmedchem.1c01293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To discover celastrol (CEL) derivatives with enhanced Hsp90-Cdc37 inhibition, C-20-COOH was introduced with various substituted imidazoles, which might affect the Michael addition of CEL by nucleophilic attack. The most potent compound 9, which showed higher antiproliferation, covalent-binding ability, and Hsp90-Cdc37 inhibition than CEL, was selected from 28 new target compounds. Then, the binding sites and the docking mode of 9 to Hsp90 and Cdc37 were studied. Furthermore, the activity of 9 sharply decreased or even disappeared in the Hsp90- and/or Cdc37-overexpressing A549 cells, indicating that the activity was related to its combination with Hsp90 and Cdc37. Moreover, 9 could more effectively induce apoptosis and inhibit tumor growth than CEL in vivo. This study first found that imidazoles linked to C-20 of CEL might affect its Michael addition, which will provide support of CEL or even the other Michael acceptors for the development as antitumor agents.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Manyi Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Lulu Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Zhichao Lei
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Cheng Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Tianyuan Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jianbo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| |
Collapse
|
10
|
Xu S, Fan R, Wang L, He W, Ge H, Chen H, Xu W, Zhang J, Xu W, Feng Y, Fan Z. Synthesis and biological evaluation of celastrol derivatives as potent antitumor agents with STAT3 inhibition. J Enzyme Inhib Med Chem 2021; 37:236-251. [PMID: 34894961 PMCID: PMC8667935 DOI: 10.1080/14756366.2021.2001805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Using STAT3 inhibitors as a potential strategy in cancer therapy have attracted much attention. Recently, celastrol has been reported that it could directly bind to and suppress the activity of STAT3 in the cardiac dysfunction model. To explore more effective STAT3 inhibiting anti-tumour drug candidates, we synthesised a series of celastrol derivatives and biologically evaluated them with several human cancer cell lines. The western blotting analysis showed that compound 4 m, the most active derivative, could suppress the STAT3's phosphorylation as well as its downstream genes. SPR analysis, molecular docking and dynamics simulations' results indicated that the 4m could bind with STAT3 protein more tightly than celastrol. Then we found that the 4m could block cell-cycle and induce apoptosis on HCT-116 cells. Furthermore, the anti-tumour effect of 4m was verified on colorectal cancer organoid. This is the first research that discovered effective STAT3 inhibitors as potent anti-tumour agents from celastrol derivatives.
Collapse
Affiliation(s)
- Shaohua Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China
| | - Ruolan Fan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China
| | - Lu Wang
- National Center of Colorectal Disease, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Weishen He
- Biology Department, Boston College, Brighton, MA, USA
| | - Haixia Ge
- School of Life Sciences, Huzhou University, Huzhou, P.R. China
| | - Hailan Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China
| | - Wen Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China
| | - Jian Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Wei Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China
| | - Yaqian Feng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, P.R. China
| | - Zhimin Fan
- National Center of Colorectal Disease, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, P.R. China
| |
Collapse
|
11
|
Lim HY, Ong PS, Wang L, Goel A, Ding L, Li-Ann Wong A, Ho PCL, Sethi G, Xiang X, Goh BC. Celastrol in cancer therapy: Recent developments, challenges and prospects. Cancer Lett 2021; 521:252-267. [PMID: 34508794 DOI: 10.1016/j.canlet.2021.08.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/25/2021] [Indexed: 01/05/2023]
Abstract
Cancer is one of the world's biggest healthcare burdens and despite the current advancements made in treatment plans, the outcomes for oncology patients have yet to reach their full potential. Hence, there is a pressing need to develop novel anti-cancer drugs. A popular drug class for research are natural compounds, due to their multi-targeting potential and enhanced safety profile. One such promising natural bioactive compound derived from a vine, Tripterygium wilfordii is celastrol. Pre-clinical studies revolving around the use of celastrol have revealed positive pharmacological activities in various types of cancers, thus suggesting the chemical's potential anti-cancerous effects. However, despite the numerous preclinical studies carried out over the past few decades, celastrol has not reached human trials for cancer. In this review, we summarize the mechanisms and therapeutic potentials of celastrol in treatment for different types of cancer. Subsequently, we also explore the possible reasons hindering its development for human use as cancer therapy, like its narrow therapeutic window and poor pharmacokinetic properties. Additionally, after critically analysing both in vitro and in vivo evidence, we discuss about the key pathways effected by celastrol and the suitable types of cancer that can be targeted by the natural drug, thus giving insight into future directions that can be taken, such as in-depth analysis and research of the druggability of celastrol derivatives, to aid the clinical translation of this promising anti-cancer lead compound.
Collapse
Affiliation(s)
- Hannah Ying Lim
- Department of Pharmacy, National University of Singapore, 117559, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Pei Shi Ong
- Department of Pharmacy, National University of Singapore, 117559, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Arul Goel
- La Canada High School, La Canada Flintridge, CA, 91011, USA
| | - Lingwen Ding
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, 119228, Singapore
| | - Paul Chi-Lui Ho
- Department of Pharmacy, National University of Singapore, 117559, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, 201203, PR China.
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, 119228, Singapore.
| |
Collapse
|
12
|
Çapan İ, Servi S, Yıldırım İ, Sert Y. Synthesis, DFT Study, Molecular Docking and Drug‐Likeness Analysis of the New Hydrazine‐1‐Carbothioamide, Triazole and Thiadiazole Derivatives: Potential Inhibitors of HSP90. ChemistrySelect 2021. [DOI: 10.1002/slct.202101086] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- İrfan Çapan
- Technical Sciences Vocational College Department of Material and Material Processing Technologies Gazi University 06560 Ankara TURKEY
- Faculty of Pharmacy Department of Pharmaceutical Chemistry Gazi University 06560 Ankara TURKEY
| | - Süleyman Servi
- Department of Chemistry Faculty of Science Fırat University 23169 Elazığ TURKEY
| | - İsmail Yıldırım
- Department of Chemistry Faculty of Science Erciyes University 38100 Kayseri TURKEY
| | - Yusuf Sert
- Sorgun Vocational High School Yozgat Bozok University 66700 Yozgat TURKEY
| |
Collapse
|