1
|
Yang H, Li J, Wang BL, Yang XY, Zhang Y. Discovery, synthesis, and antibacterial activity of novel myrtucommulone analogs as inhibitors of DNA gyrase and topoisomerase IV. Eur J Med Chem 2024; 283:117138. [PMID: 39662286 DOI: 10.1016/j.ejmech.2024.117138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/10/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024]
Abstract
Drug-resistant bacterial infections have emerged as a new challenge in anti-infective treatment, posing a significant threat to public health. DNA gyrase and topoisomerase IV (Topo IV) are promising targets for designing new antibiotics. Myrtus communis L. has long been used as a traditional herb for antisepsis and disinfection; however, the underlying mechanism of the antibacterial activity remains unclear. In this study, a class of novel myrtucommulone derivatives was synthesized and evaluated for DNA gyrase and Topo IV inhibitions. Analog 27 was the most potent DNA gyrase and Topo IV inhibitor. In bioactivity assays, molecule 27 exhibited a significant antibacterial effect against methicillin-resistant Staphylococcus aureus (MRSA). Additionally, it exhibited rapid bactericidal properties, low toxicity, and low inducing bacterial resistance. It demonstrated synergistic effects with ofloxacin, amikacin, cefepime, and ceftazidime, which make it a potential candidate for antimicrobial application. This work will facilitate the future development of myrtucommulone-based DNA gyrase and Topo IV inhibitors as novel antimicrobials to combat the increasing prevalence of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Hao Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Jian Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Bo-Lin Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xin-Ya Yang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yu Zhang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
2
|
Zhang J, Liu P, Chen J, Yao D, Liu Q, Zhang J, Zhang HW, Leung ELH, Yao XJ, Liu L. Upgrade of chrysomycin A as a novel topoisomerase II inhibitor to curb KRAS-mutant lung adenocarcinoma progression. Pharmacol Res 2023; 187:106565. [PMID: 36414124 DOI: 10.1016/j.phrs.2022.106565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/20/2022]
Abstract
A primary strategy employed in cancer therapy is the inhibition of topoisomerase II (Topo II), implicated in cell survival. However, side effects and adverse reactions restrict the utilization of Topo II inhibitors. Thus, investigations focus on the discovery of novel compounds that are capable of inhibiting the Topo II enzyme and feature safer toxicological profiles. Herein, we upgrade an old antibiotic chrysomycin A from Streptomyces sp. 891 as a compelling Topo II enzyme inhibitor. Our results show that chrysomycin A is a new chemical entity. Notably, chrysomycin A targets the DNA-unwinding enzyme Topo II with an efficient binding potency and a significant inhibition of intracellular enzyme levels. Intriguingly, chrysomycin A kills KRAS-mutant lung adenocarcinoma cells and is negligible cytotoxic to normal cells at the cellular level, thus indicating a capability of potential treatment. Furthermore, mechanism studies demonstrate that chrysomycin A inhibits the Topo II enzyme and stimulates the accumulation of reactive oxygen species, thereby inducing DNA damage-mediated cancer cell apoptosis. Importantly, chrysomycin A exhibits excellent control of cancer progression and excellent safety in tumor-bearing models. Our results provide a chemical scaffold for the synthesis of new types of Topo II inhibitors and reveal a novel target for chrysomycin A to meet its further application.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Jianwei Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310000, China
| | - Dahong Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Qing Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Juanhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Hua-Wei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310000, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau.
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau.
| |
Collapse
|
3
|
Hu Y, Shi W, Yan Z, Liao J, Liu M, Xu J, Wang W, Wu Y, Zhang C, Guo H. Base-Catalyzed Sequential 1,4-Addition/Intramolecular Cyclization/Aromatization Reaction: Synthesis of Benzofuro[3,2- b]pyridines. Org Lett 2021; 23:6780-6783. [PMID: 34432980 DOI: 10.1021/acs.orglett.1c02357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient K2CO3-catalyzed 1,4-addition/intramolecular cyclization/aromatization reaction of aurone-derived 1-azadienes with trisubstituted allenoates has been developed, giving a series of benzofuro[3,2-b]pyridines in moderate to excellent yields. The reaction proceeded efficiently under an air atmosphere without the use of transition metal catalysts. This protocol provides a concise approach to benzofuro[3,2-b]pyridines.
Collapse
Affiliation(s)
- Yimin Hu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Wangyu Shi
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Zhengyang Yan
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Jianning Liao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Min Liu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Jiaqing Xu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Cheng Zhang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|