1
|
Aziz M, Ejaz SA, Alsfouk BA, Sultan A, Li C. Identification of potential inhibitors against E.coli via novel approaches based on deep learning and quantum mechanics-based atomistic investigations. Arch Biochem Biophys 2023; 747:109761. [PMID: 37734644 DOI: 10.1016/j.abb.2023.109761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Currently, drug resistance to commercially available antibiotics is imparting negative consequences to global health, and the development of novel antibiotics in a timely manner is a prime need of the hour. In the current study, an e-pharmacophore model was built using the 3D structure of DNA gyrase in complex with a standard inhibitor. The generated model was subjected to a pharmacophore based virtual screening against 45,257,086 molecules having 223,460,579 conformers available in MCULE database. Pharmacophore based screening retrieved eight molecules as top hit based on pharmacophoric features in comparison to standard inhibitors. Afterward, all eight compounds were subjected molecular docking based on deep learning algorithm. The molecular docking revealed that compound MCULE-6042843173 and MCULE-2362244223 had significant binding orientation inside active pocket of targeted protein with binding affinity of -9.52 and -9.24 kcal/mol respectively. In addition, density functional theory studies (DFT) were performed to evaluate quantum mechanics of top ranked compounds which were investigated through quantum mechanics (QM) computations which strongly assisted the findings of other in-silico investigations. Consequently, the MCULE-6042843173 and MCULE-2362244223 were subjected to MD simulation studies for evaluation of stability, hydrogen bond analysis, van der Waals interactions, and the contact profile of compounds with targeted amino acid residues. Findings of current study suggested MCULE-6042843173 and MCULE-2362244223 as potential and novel inhibitor of DNA Gyrase enzyme.
Collapse
Affiliation(s)
- Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ahlam Sultan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O Box 84428, Riyadh, 11671, Saudi Arabia
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, 14195, Germany.
| |
Collapse
|
2
|
Grossman S, Fishwick CWG, McPhillie MJ. Developments in Non-Intercalating Bacterial Topoisomerase Inhibitors: Allosteric and ATPase Inhibitors of DNA Gyrase and Topoisomerase IV. Pharmaceuticals (Basel) 2023; 16:261. [PMID: 37259406 PMCID: PMC9964621 DOI: 10.3390/ph16020261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 10/15/2023] Open
Abstract
Increases in antibiotic usage and antimicrobial resistance occurrence have caused a dramatic reduction in the effectiveness of many frontline antimicrobial treatments. Topoisomerase inhibitors including fluoroquinolones are broad-spectrum antibiotics used to treat a range of infections, which stabilise a topoisomerase-DNA cleavage complex via intercalation of the bound DNA. However, these are subject to bacterial resistance, predominantly in the form of single-nucleotide polymorphisms in the active site. Significant research has been undertaken searching for novel bioactive molecules capable of inhibiting bacterial topoisomerases at sites distal to the fluoroquinolone binding site. Notably, researchers have undertaken searches for anti-infective agents that can inhibit topoisomerases through alternate mechanisms. This review summarises work looking at the inhibition of topoisomerases predominantly through non-intercalating agents, including those acting at a novel allosteric site, ATPase domain inhibitors, and those offering unique binding modes and mechanisms of action.
Collapse
Affiliation(s)
- Scott Grossman
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
3
|
Yi J, Cai Z, Qiu H, Lu F, Luo Z, Chen B, Gu Q, Xu J, Zhou H. Fragment screening and structural analyses highlight the ATP-assisted ligand binding for inhibitor discovery against type 1 methionyl-tRNA synthetase. Nucleic Acids Res 2022; 50:4755-4768. [PMID: 35474479 PMCID: PMC9071491 DOI: 10.1093/nar/gkac285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
Methionyl-tRNA synthetase (MetRS) charges tRNAMet with l-methionine (L-Met) to decode the ATG codon for protein translation, making it indispensable for all cellular lives. Many gram-positive bacteria use a type 1 MetRS (MetRS1), which is considered a promising antimicrobial drug target due to its low sequence identity with human cytosolic MetRS (HcMetRS, which belongs to MetRS2). Here, we report crystal structures of a representative MetRS1 from Staphylococcus aureus (SaMetRS) in its apo and substrate-binding forms. The connecting peptide (CP) domain of SaMetRS differs from HcMetRS in structural organization and dynamic movement. We screened 1049 chemical fragments against SaMetRS preincubated with or without substrate ATP, and ten hits were identified. Four cocrystal structures revealed that the fragments bound to either the L-Met binding site or an auxiliary pocket near the tRNA CCA end binding site of SaMetRS. Interestingly, fragment binding was enhanced by ATP in most cases, suggesting a potential ATP-assisted ligand binding mechanism in MetRS1. Moreover, co-binding with ATP was also observed in our cocrystal structure of SaMetRS with a class of newly reported inhibitors that simultaneously occupied the auxiliary pocket, tRNA site and L-Met site. Our findings will inspire the development of new MetRS1 inhibitors for fighting microbial infections.
Collapse
Affiliation(s)
| | | | - Haipeng Qiu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Feihu Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiteng Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bingyi Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huihao Zhou
- To whom correspondence should be addressed. Tel: +86 20 39943350;
| |
Collapse
|
4
|
Elseginy SA, Anwar MM. Pharmacophore-Based Virtual Screening and Molecular Dynamics Simulation for Identification of a Novel DNA Gyrase B Inhibitor with Benzoxazine Acetamide Scaffold. ACS OMEGA 2022; 7:1150-1164. [PMID: 35036778 PMCID: PMC8756603 DOI: 10.1021/acsomega.1c05732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 05/10/2023]
Abstract
DNA gyrase B is one of the enzyme targets for antimicrobial drug development, and its absence in mammals makes it a suitable target for the creation of safe antibacterial drugs. We identified six novel hits as DNA gyrase B inhibitors in the present study by employing 3D-pharmacophore structure-based virtual screening. The lead compounds complied with drug-likeness rules and lacked toxicity. Compound 4 (ZINC32858011) showed the highest inhibitory activity with an IC50 value of 6.3 ± 0.1 μM against the DNA gyrase enzyme. In contrast, the positive controls ciprofloxacin and novobiocin used in enzyme inhibition assay had IC50 values of 14.4 ± 0.2 and 12.4 ± 0.2 μM, respectively. The molecular docking of the six hits demonstrated that compounds 1, 2, 4, and 6 had suitable fitting modes inside the binding pocket. Molecular dynamics simulations were carried out for the six hits and the rmsd, rmsf, radius of gyration, and solvent accessible surface area parameters obtained from 100 ns molecular dynamics simulations for the six compounds complexed with a DNA gyrase B protein indicated that compound 4 (ZINC32858011) formed the most stable complex with DNA gyrase B. The binding free energy calculation with the MM-PBSA method suggested that the van der Waals interaction, followed by electrostatic force, played a significant role in the binding. Per-residue free binding energy decomposition showed that Ile78 contributed the most for the binding energy followed by Asn46, Asp49, Glu50, Asp73, Ile78, Pro79, Ala86, Ile90, Val120, Thr165, and Val167.
Collapse
Affiliation(s)
- Samia A. Elseginy
- Green
Chemistry Department, Chemical Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
- . Phone: +20(1150882009)
| | - Manal M. Anwar
- Therapeutical
Chemistry Department, National Research
Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|