1
|
Pal R, Teli G, Sengupta S, Maji L, Purawarga Matada GS. An outlook of docking analysis and structure-activity relationship of pyrimidine-based analogues as EGFR inhibitors against non-small cell lung cancer (NSCLC). J Biomol Struct Dyn 2024; 42:9795-9811. [PMID: 37642992 DOI: 10.1080/07391102.2023.2252082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Almost 80% of lung cancer diagnoses each year correspond to non-small cell lung cancer (NSCLC). The percentage of NSCLC with EGFR overexpression ranges from 40% to 89%, with squamous tumors showing the greatest rates (89%) and adenocarcinomas showing the lowest rates (41%). Therefore, in NSCLC therapy, blocking the EGFR-driven pathway by inhibiting the intracellular tyrosine kinase domain of EGFR has exhibited significant improvement. In this view, several small molecules particularly pyrimidine/fused pyrimidine scaffolds were intended for molecular hybridization to develop EGFR-TK inhibitors. However, the associated limitation such as resistance and genetic mutation along with adverse effects, constrained the long-term treatment and effectiveness of such medication. Therefore, in recent years, pyrimidine derivatives were uncovered as potential EGFR TKIs. The present review summarised the research progress of EGFR TKIs to dazed structure-activity relationship, biological evaluation, and comparative docking studies of pyrimidine compounds. We have added the comparative docking analysis followed by the molecular simulation study against the four different PDBs of EGFR to strengthen the already existing research. Docking analysis unfolded that compound 14 resulted as noticeable with all different PDB and managed to interact with some of the crucial amino acid residues. From a future perspective, researchers must develop a more selective inhibitor, that can selectively target the mutation. Our review will support medicinal chemists in the direction of the development of novel pyrimidine-based EGFR TKIs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Ghanshyam Teli
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Sindhuja Sengupta
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Lalmohan Maji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | |
Collapse
|
2
|
Al-Wahaibi LH, Elbastawesy MAI, Abodya NE, Youssif BGM, Bräse S, Shabaan SN, Sayed GH, Anwer KE. New Pyrazole/Pyrimidine-Based Scaffolds as Inhibitors of Heat Shock Protein 90 Endowed with Apoptotic Anti-Breast Cancer Activity. Pharmaceuticals (Basel) 2024; 17:1284. [PMID: 39458925 PMCID: PMC11510237 DOI: 10.3390/ph17101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Supported by a comparative study between conventional, grinding, and microwave techniques, a mild and versatile method based on the [1 + 3] cycloaddition of 2-((3-nitrophenyl)diazenyl)malononitrile to tether pyrazole and pyrimidine derivatives in good yields was used. Methods: The newly synthesized compounds were analyzed with IR, 13C NMR, 1H NMR, mass, and elemental analysis methods. The products show interesting precursors for their antiproliferative anti-breast cancer activity. Results: Pyrimidine-containing scaffold compounds 9 and 10 were the most active, achieving IC50 = 26.07 and 4.72 µM against the breast cancer MCF-7 cell line, and 10.64 and 7.64 µM against breast cancer MDA-MB231-tested cell lines, respectively. Also, compounds 9 and 10 showed a remarkable inhibitory activity against the Hsp90 protein with IC50 values of 2.44 and 7.30 µM, respectively, in comparison to the reference novobiocin (IC50 = 1.14 µM). Moreover, there were possible apoptosis and cell cycle arrest in the G1 phase for both tested compounds (supported by CD1, caspase-3,8, BAX, and Bcl-2 studies). Also, the binding interactions of compound 9 were confirmed through molecular docking, and simulation studies displayed a complete overlay into the Hsp90 protein pocket. Conclusions: Compounds 9 and 10 may have apoptotic antiproliferative action as Hsp90 inhibitors.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mohammed A. I. Elbastawesy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
| | - Nader E. Abodya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Bahaa G. M. Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Sara N. Shabaan
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt;
| | - Galal H. Sayed
- Heterocyclic Synthesis Lab., Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt; (G.H.S.); (K.E.A.)
| | - Kurls E. Anwer
- Heterocyclic Synthesis Lab., Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt; (G.H.S.); (K.E.A.)
| |
Collapse
|
3
|
Patel VC, Patel AJ, Patel DS, Dholakia AB, Ansari SA, Agrawal M. Unveiling the antibacterial efficacy of thiazolo [3,2-a] pyrimidine: Synthesis, molecular docking, and molecular dynamic simulation. J Biochem Mol Toxicol 2024; 38:e23822. [PMID: 39215758 DOI: 10.1002/jbt.23822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Two series of C-Mannich base derivatives were synthesized and evaluated through the reaction of formaldehyde, two thiazolo-pyrimidine compounds, and various 2°-amines. The chemical structures and inherent properties of the synthesized compounds were authenticated using a variety of spectroscopic techniques. The aseptic bactericidal potential of the compounds was assessed alongside five common bacterial microbes, with Ampicillin employed as the reference drug. Compounds 9b and 9d demonstrated comparable antibacterial activity to ampicillin against Bacillus subtilis and Bacillus megaterium, respectively, at 100 μg/mL. Furthermore, compounds 9f and 10f exhibited noteworthy action against Staphylococcus aureus (MIC: 250 μg/mL). Compounds 10b and 10f displayed excellent efficacy versus Escherichia coli, boasting (MIC: 50 μg/mL). Molecular docking studies elucidated the necessary connections and energies of molecular entities with the E. coli DNA gyrase B enzyme, a pivotal target in bacterial DNA replication. Further thermodynamic stability of the ligand-receptor complex of 10b and 10f were further validated though 200 ns molecular dynamics simulation. The findings highlight the potential of these synthesized derivatives as effective antibacterial agents and provide valuable insights into their mechanism of action.
Collapse
Affiliation(s)
- Vishant C Patel
- Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, India
| | - Ankit J Patel
- Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, India
| | - Darshan S Patel
- Shri Alpesh N. Patel Post Graduate Institute of Science and Research, Anand, India
| | - Amit B Dholakia
- Department of Chemistry, Birsa Munda Tribal University, Rajpipda, India
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohit Agrawal
- School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, India
| |
Collapse
|
4
|
Reda N, Mohamed KO, Abdou K, Helwa AA, Elshewy A. Novel Pyrimidine-5-Carbonitriles as potential apoptotic and antiproliferative agents by dual inhibition of EGFR WT/T790M and PI3k enzymes; Design, Synthesis, biological Evaluation, and docking studies. Bioorg Chem 2024; 145:107185. [PMID: 38350273 DOI: 10.1016/j.bioorg.2024.107185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
A new series of 6-(4-fluorophenyl)-2-(methylthio) pyrimidine-5-carbonitrile derivatives were designed and synthesized as EGFR/PI3K dual inhibitors, and potential antiproliferative agents. The new 22 compounds were screened by DTP-NCI against all NCI60 cell lines. Almost all compounds showed cytotoxic activity. Compound 7c showed a promising antitumour activity on CNS cancer (SNB-75), and ovarian cancer (OVAR-4) with IC50 < 0.01, and 0.64 µM, respectively. Fortunately, 7c exhibited a better safety profile on normal cells (WI-38) than doxorubicin by 2.2-fold. Compound 7c displayed selective inhibitory activity on EGFRt790m over EGFRWT with IC50 = 0.08, and 0.13 µM, respectively, wherefore it might overcome EGFR-TKIs resistance. In addition to its remarkable inhibitory activity on all PI3K isoforms, specifically PI3K-δ with IC50 = 0.64 µM Compared with LY294002 IC50 = 7.6 µM. Compound 7c arrested the cell cycle of SNB-75 & OVAR-4 at the G0-G1 phase coupled with apoptosis induction. The western blotting analysis approved decreasing the expression level of p-AKT coupled with an increase in Casp3, Casp9, and BAX proteins in the SNB-75 & OVAR-4 after being treated with 7c which may support the suggested mechanism of action of 7c as EGFR/PI3K dual inhibitor. Physicochemical parameters were forecasted using SwissADME online tool. MD showed the interaction of 7c with the crucial amino acids of the active domain of both EGFR/PI3K which may explain its potent inhibitory activities. In vivo study disclosed a significant decrease in tumor weight and the number of nodules in the group of mice treated with 7c compared with the control group.
Collapse
Affiliation(s)
- Nada Reda
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Egypt.
| | - Khaled O Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy. Sinai University (Arish branch), El Arish, Egyptzip code 45511.
| | - Kareem Abdou
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Amira A Helwa
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Egypt.
| | - Ahmed Elshewy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt.
| |
Collapse
|
5
|
Elsenbawy ESM, Alshehri ZS, Babteen NA, Abdel-Rahman AAH, El-Manawaty MA, Nossier ES, Arafa RK, Hassan NA. Designing Potent Anti-Cancer Agents: Synthesis and Molecular Docking Studies of Thieno[2,3- d][1,2,4]triazolo[1,5- a]pyrimidine Derivatives. Molecules 2024; 29:1067. [PMID: 38474579 DOI: 10.3390/molecules29051067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
A new series of thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidines was designed and synthesized using readily available starting materials, specifically, β-enaminoester. Their cytotoxicity was screened against three cancer cell lines, namely, MCF-7, HCT-116, and PC-3. 2-(4-bromophenyl)triazole 10b and 2-(anthracen-9-yl)triazole 10e afforded excellent potency against MCF-7 cell lines (IC50 = 19.4 ± 0.22 and 14.5 ± 0.30 μM, respectively) compared with doxorubicin (IC50 = 40.0 ± 3.9 μM). The latter derivatives 10b and 10e were further subjected to in silico ADME and docking simulation studies against EGFR and PI3K and could serve as ideal leads for additional modification in the field of anticancer research.
Collapse
Affiliation(s)
- Eman S M Elsenbawy
- Department of Chemistry, Faculty of Science, Menofia University, Shbien El-Kom 32511, Egypt
| | - Zafer S Alshehri
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Dawadmi 19257, Saudi Arabia
| | - Nouf A Babteen
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Adel A-H Abdel-Rahman
- Department of Chemistry, Faculty of Science, Menofia University, Shbien El-Kom 32511, Egypt
| | - Mai A El-Manawaty
- Department of Pharmacognosy, Pharmaceutical Science Division, National Research Centre, Cairo 12622, Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Laboratory, Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo 12578, Egypt
| | - Nasser A Hassan
- Synthetic Unit, Department of Photochemistry, Chemical Industries Research Institute, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
6
|
Xu S, Zhou Z, He J, Guo J, Huang X, An Y, Pan Q, Xu S, Zhu W. Novel bioactive 2-phenyl-4-aminopyrimidine derivatives as EGFR Del19/T790M/C797S inhibitors for the treatment of non-small cell lung cancer. Arch Pharm (Weinheim) 2024; 357:e2300460. [PMID: 38009481 DOI: 10.1002/ardp.202300460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Abstract
Overexpression of the epidermal growth factor receptor (EGFR) has been implicated in the development of non-small-cell lung cancer (NSCLC). Thus, EGFR is an effective drug target for the treatment of NSCLC, and developing fourth-generation EGFR inhibitors to overcome the resistance mediated by T790M/C797S mutations are currently under investigation. In this study, based on the binding model between Angew2017-7634-1 and EGFRT790M/C797S , several series of 2-phenyl-4-aminopyrimidine derivatives were designed and synthesized. The bioactivity of these compounds was evaluated and it is suggested that compound A23 could effectively inhibit the proliferation of Ba/F3-EGFRDel19/T790M/C797S and H1975-EGFRL858R/T790M cells, with an IC50 of 0.22 ± 0.07 and 0.52 ± 0.03 μM, respectively. Meanwhile, the kinase activity of A23 against EGFRL858R/T790M and EGFRDel19/T790M/C797S was also evaluated, with an IC50 of 0.33 and 0.133 μM, respectively. Moreover, compound A23 was further evaluated in the H1975 xenograft models with significant in vivo tumor growth inhibitions of 25.5%, which means that A23 could effectively inhibit the growth of tumor cells and promote the death of tumor cells. As a result, A23 could be identified as a novel potential EGFRDel19/T790M/C797S inhibitor.
Collapse
Affiliation(s)
- Shidi Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Zhihui Zhou
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, China
| | - Jie He
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Jiaojiao Guo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Xiaoling Huang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Yufeng An
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Kandhasamy K, Surajambika RR, Velayudham PK. Pyrazolo - Pyrimidines as Targeted Anticancer Scaffolds - A Comprehensive Review. Med Chem 2024; 20:293-310. [PMID: 37885114 DOI: 10.2174/0115734064251256231018104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Globally, cancer is the leading cause of death, which causes 10 million deaths yearly. Clinically, several drugs are used in treatment but due to drug resistance and multidrug resistance, there occurs a failure in the cancer treatment. OBJECTIVES The present review article is a comprehensive review of pyrazole and pyrimidine hybrids as potential anticancer agents. METHODS The review comprises more than 60 research works done in this field. The efficiency of the reported pyrazolopyrimidine fused heterocyclic with their biological data and the influence of the structural aspects of the molecule have been discussed. RESULTS This review highlighted pyrazolo-pyrimidines as targeted anticancer agents with effect on multiple targets. CONCLUSION The review will be helpful for the researchers involved in targeted drugs for cancer therapy for designing new scaffolds with pyrazolo-pyrimidine moieties.
Collapse
Affiliation(s)
- Kesavamoorthy Kandhasamy
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Chennai- 600 097, India
| | | | - Pradeep Kumar Velayudham
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Chennai- 600 097, India
| |
Collapse
|
8
|
Shihab WA, Kubba AAR, Tahtamouni LH, Saleh KM, AlSakhen MF, Kanaan SI, Saleh AM, Yasin SR. Synthesis, In Silico Prediction, and In Vitro Evaluation of Anti-tumor Activities of Novel 4'-Hydroxybiphenyl-4-carboxylic Acid Derivatives as EGFR Allosteric Site Inhibitors. Curr Med Chem 2024; 31:6336-6356. [PMID: 38693732 DOI: 10.2174/0109298673305163240427065543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 05/03/2024]
Abstract
INTRODUCTION Allosteric inhibition of EGFR tyrosine kinase (TK) is currently among the most attractive approaches for designing and developing anti-cancer drugs to avoid chemoresistance exhibited by clinically approved ATP-competitive inhibitors. The current work aimed to synthesize new biphenyl-containing derivatives that were predicted to act as EGFR TK allosteric site inhibitors based on molecular docking studies. METHODS A new series of 4'-hydroxybiphenyl-4-carboxylic acid derivatives, including hydrazine-1-carbothioamide (S3-S6) and 1,2,4-triazole (S7-S10) derivatives, were synthesized and characterized using IR, 1HNMR, 13CNMR, and HR-mass spectroscopy. RESULTS Compound S4 had a relatively high pharmacophore-fit score, indicating that it may have biological activity similar to the EGFR allosteric inhibitor reference, and it scored a relatively low ΔG against EGFR TK allosteric site, indicating a high likelihood of drug-receptor complex formation. Compound S4 was cytotoxic to the three cancer cell lines tested, particularly HCT-116 colorectal cancer cells, with an IC50 value comparable to Erlotinib. Compound S4 induced the intrinsic apoptotic pathway in HCT-116 cells by arresting them in the G2/M phase. All of the new derivatives, including S4, met the in silico requirements for EGFR allosteric inhibitory activity. CONCLUSION Compound S4 is a promising EGFR tyrosine kinase allosteric inhibitor that warrants further research.
Collapse
Affiliation(s)
- Wurood A Shihab
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-Al-Mouadam, Baghdad, 10001, Iraq
| | - Ammar A Razzak Kubba
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-Al-Mouadam, Baghdad, 10001, Iraq
| | - Lubna H Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Khaled M Saleh
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mai F AlSakhen
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Sana I Kanaan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Abdulrahman M Saleh
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
- Epidemiological Surveillance Unit, Aweash El-Hagar Family Medicine Center, MOHP, Mansoura, 35711, Egypt
| | - Salem R Yasin
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
9
|
Aziz M, Sarfraz M, Khurrum Ibrahim M, Ejaz SA, Zehra T, Ogaly HA, Arafat M, Al-Zahrani FAM, Li C. Evaluation of anticancer potential of tetracene-5,12-dione (A01) and pyrimidine-2,4-dione (A02) via caspase 3 and lactate dehydrogenase cytotoxicity investigations. PLoS One 2023; 18:e0292455. [PMID: 38127898 PMCID: PMC10734984 DOI: 10.1371/journal.pone.0292455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/20/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer stands as a significant global cause of mortality, predominantly arising from the dysregulation of key enzymes and DNA. One strategic avenue in developing new anticancer agents involves targeting specific proteins within the cancer pathway. Amidst ongoing efforts to enhance the efficacy of anticancer drugs, a range of crucial medications currently interact with DNA at the molecular level, exerting profound biological effects. Our study is driven by the objective to comprehensively explore the potential of two compounds: (7S,9S)-7-[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione (A01) and 5-fluoro-1H-pyrimidine-2,4-dione (A02). These compounds have demonstrated marked efficacy against breast and cervical cancer cell lines, positioning them as promising anticancer candidates. In our investigation, A01 has emerged as a particularly potent candidate, with its potential bolstered by corroborative evidence from lactate dehydrogenase release and caspase-3 activity assays. On the other hand, A02 has exhibited remarkable anticancer potential. To further elucidate their molecular mechanisms and interactions, we employed computational techniques, including molecular docking and molecular dynamics simulations. Notably, our computational analyses suggest that the A01-DNA complex predominantly interacts via the minor groove, imparting significant insights into its mechanism of action. While earlier studies have also highlighted the anticancer activity of A01, our research contributes by providing a deeper understanding of its binding mechanisms through computational investigations. This knowledge holds potential for designing more effective drugs that target cancer-associated proteins. These findings lay a robust groundwork for future inquiries and propose that derivatives of A01 could be synthesized as potent bioactive agents for cancer treatment. By elucidating the distinctive aspects of our study's outcomes, we address the concern of distinguishing our findings from those of prior research.
Collapse
Affiliation(s)
- Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | | | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Tasneem Zehra
- Department of Basic Science & Humanities, Dawood University of Engineering & Technology, Karachi, Pakistan
| | - Hanan A. Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | | | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| |
Collapse
|
10
|
Al-Warhi T, Al-Karmalawy AA, Elmaaty AA, Alshubramy MA, Abdel-Motaal M, Majrashi TA, Asem M, Nabil A, Eldehna WM, Sharaky M. Biological evaluation, docking studies, and in silico ADME prediction of some pyrimidine and pyridine derivatives as potential EGFR WT and EGFR T790M inhibitors. J Enzyme Inhib Med Chem 2023; 38:176-191. [PMID: 36317648 PMCID: PMC9635468 DOI: 10.1080/14756366.2022.2135512] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
Herein, a set of pyridine and pyrimidine derivatives were assessed for their impact on the cell cycle and apoptosis. Human breast cancer (MCF7), hepatocellular carcinoma (HEPG2), larynx cancer (HEP2), lung cancer (H460), colon cancers (HCT116 and Caco2), and hypopharyngeal cancer (FADU), and normal Vero cell lines were used. Compounds 8 and 14 displayed outstanding effects on the investigated cell lines and were further tested for their antioxidant activity in MCF7, H460, FADU, HEP2, HEPG2, HCT116, Caco2, and Vero cells by measuring superoxide dismutase (SOD), malondialdehyde content (MDA), reduced glutathione (GSH), and nitric oxide (NO) content. Besides, Annexin V-FITC apoptosis detection and cell cycle DNA index using the HEPG-2 cell line were established on both compounds as well. Furthermore, compounds 8 and 14 were assessed for their EGFR kinase (Wild and T790M) inhibitory activities, revealing eligible potential. Additionally, molecular docking, ADME, and SAR studies were carried out for the investigated candidates.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A. Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Maha A. Alshubramy
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
| | - Marwa Abdel-Motaal
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Medhat Asem
- College of Engineering and Information Technology, Onaizah Colleges, Al-Qassim, Saudi Arabia
| | - Ahmed Nabil
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Magdy Eldaly S, Salama Zakaria D, Hanafy Metwally N. Design, Synthesis, Anticancer Evaluation and Molecular Modeling Studies of New Thiazolidinone-Benzoate Scaffold as EGFR Inhibitors, Cell Cycle Interruption and Apoptosis Inducers in HepG2. Chem Biodivers 2023; 20:e202300138. [PMID: 37695095 DOI: 10.1002/cbdv.202300138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023]
Abstract
Synthesis of new anticancer candidates with protein kinases inhibitory potency is a major goal of pharmaceutical science and synthetic research. This current work represents the synthesis of a series of substituted benzoate-thiazolidinones. Most prepared thiazolidinones were evaluated in vitro for their potential anticancer activity against three cell lines by MTT assay, and they found to be more effective against cancer cell lines with no harm toward normal cells. Thiazolidinones 5 c and 5 h were further evaluated to be kinase inhibitors against EGFR showing effective inhibitory impact (with IC50 value; 0.2±0.009 and 0.098±0.004 μM, for 5 c and 5 h, respectively). Furthermore, 5 c and 5 h have effects on cell cycle and apoptosis induction capability in HepG2 cell lines by DNA-flow cytometry analysis and annexin V-FITC apoptosis assay, respectively. The results showed that they have effect of disrupting the cell cycle and causing cell mortality by apoptosis in the treated cells. Moreover, molecular docking studies showed better binding patterns for 5 c and 5 h with the active site of the epidermal growth factor receptor (EGFR) protein kinase (PDB code 1M17). Finally, toxicity risk and physicochemical characterization by Osiris method was performed on most of the compounds, revealing excellent properties as possible drugs.
Collapse
Affiliation(s)
- Salwa Magdy Eldaly
- Department of Chemistry, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Dalia Salama Zakaria
- Department of Chemistry, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | | |
Collapse
|
12
|
Taruneshwar Jha K, Shome A, Chahat, Chawla PA. Recent advances in nitrogen-containing heterocyclic compounds as receptor tyrosine kinase inhibitors for the treatment of cancer: Biological activity and structural activity relationship. Bioorg Chem 2023; 138:106680. [PMID: 37336103 DOI: 10.1016/j.bioorg.2023.106680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Erratic cell proliferation is the initial symptom of cancer, which can eventually metastasize to other organs. Before cancer becomes metastatic, its spread is triggered by pro-angiogenic factors including vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), Platelet-derived growth factor receptor (PDGFR), fibroblast growth factor receptor (FGFR) and Platelet Factor (PF4), all of which are part of receptor tyrosine kinase (RTK) family. Receptor tyrosine kinases (RTKs) are cell-surface proteins and aresignaling enzymes that transfer ATP-phosphate to tyrosine residue substrates. Important biological processes like proliferation, differentiation, motility, and cell-cycle regulation are all possessedby these proteins. Unusual RTK expression is typically associated with cell growth abnormalities, which is linked to tumor acquisition, angiogenesis, and cancer progression. In addition to the already available medications, numerous other heterocyclic are being studied for their potential action against a variety of cancers. In the fight against cancer, in particular, these heterocycles have been used for their dynamic core scaffold and their inherent adaptability. In this review article, we have compiled last five years research work including nitrogen containing heterocycles that have targeted RTK. Herein, the SAR and activity of various compounds containing diverse heterocyclic (pyrimidine, indole, pyridine, pyrazole, benzimidazole, and pyrrole) scaffolds are discussed, and they may prove useful in the future for designing new leads against RTKs. Our focus in this manuscript is to comprehensively review the latest research on the biological activity and structural activity relationship of nitrogen compounds as RTK inhibitors. We believe that this may be an important contribution to the field, as it can help guide future research efforts and facilitate the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Keshav Taruneshwar Jha
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Abhimannu Shome
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Chahat
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India.
| |
Collapse
|
13
|
Kurban B, Sağlık BN, Osmaniye D, Levent S, Özkay Y, Kaplancıklı ZA. Synthesis and Anticancer Activities of Pyrazole-Thiadiazole-Based EGFR Inhibitors. ACS OMEGA 2023; 8:31500-31509. [PMID: 37663500 PMCID: PMC10468883 DOI: 10.1021/acsomega.3c04635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023]
Abstract
Lung cancer is one of the most common cancer types of cancer with the highest mortality rates. However, while epidermal growth factor receptor (EGFR) is an important parameter for lung cancer, EGFR inhibitors also show great promise in the treatment of the disease. Therefore, a series of new EGFR inhibitor candidates containing thiadiazole and pyrazole rings have been developed. The activities of the synthesized compounds were elucidated by in vitro MTT, (which is chemically 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), cytotoxicity assay, analysis of mitochondrial membrane potential (MMP) by flow cytometry, and EGFR inhibition experiments. Molecular docking and molecular dynamics simulations were performed as in silico studies. Compounds 6d, 6g, and 6j showed inhibitor activity against the A549 cell line with IC50 = 5.176 ± 0.164; 1.537 ± 0.097; and 8.493 ± 0.667 μM values, respectively. As a result of MMP by flow cytometry, compound 6g showed 80.93% mitochondrial membrane potential. According to the results of the obtained EGFR inhibitory assay, compound 6g shows inhibitory activity on the EGFR enzyme with a value of IC50 = 0.024 ± 0.002 μM.
Collapse
Affiliation(s)
- Berkant Kurban
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Begüm Nurpelin Sağlık
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Derya Osmaniye
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Serkan Levent
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Yusuf Özkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| |
Collapse
|
14
|
Ibrahim M, Uzairu A. 2D-QSAR, molecular docking, drug-likeness, and ADMET/pharmacokinetic predictions of some non-small cell lung cancer therapeutic agents. J Taibah Univ Med Sci 2023; 18:295-309. [PMID: 36817217 PMCID: PMC9926115 DOI: 10.1016/j.jtumed.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/23/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022] Open
Abstract
Objectives Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, with nearly 2 million diagnoses and a 17% 5-year survival rate. The aim of this study was to use computer-aided techniques to identify potential therapeutic agents for NSCLC. Methods The two dimensional-quantitative structure-activity relationship (2D-QSAR) modeling was employed on some potential NSCLC therapeutic agents to develop a highly predictive model. Molecular docking-based virtual screening were conducted on the same set of compounds to identify potential hit compounds. The pharmacokinetic features of the best hits were evaluated using SWISSADME and pkCSM online web servers, respectively. Results The model generated via 2D-QSAR modeling was highly predictive with R2= 0.798, R2adj = 0.754, Q2CV = 0.673, R2 test = 0.531, and cRp2 = 0.627 assessment parameters. Molecular docking-based virtual screening identified compounds 25, 32, 15, 21, and 23 with the highest MolDock scores as the best hits, of which compound 25 had the highest MolDock score of -138.329 kcal/mol. All of the identified hits had higher MolDock scores than the standard drug (osimertinib). The best hit compounds were ascertained to be drug-like in nature following the Lipinski's rule of five. Also, their ADMET features displayed average pharmacokinetic profiles. Conclusion After successful preclinical testing, the hit compounds identified in this study may serve as potential NSCLC therapeutic agents due to their safety and efficacy with the exception of compound 23, which was found to be toxic. They can also serve as a template for designing novel NSCLC therapeutic agents.
Collapse
Affiliation(s)
- M.T. Ibrahim
- Computational and Theoretical Chemistry, Department of Chemistry, Faculty of Physical Science, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - A. Uzairu
- Computational and Theoretical Chemistry, Department of Chemistry, Faculty of Physical Science, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
15
|
Mekky AEM, Sanad SMH. [3+2] Cycloaddition Synthesis of New Piperazine-Linked Bis(chromene) Hybrids Possessing Pyrazole Units as Potential Acetylcholinesterase Inhibitors. Chem Biodivers 2023; 20:e202200518. [PMID: 36988046 DOI: 10.1002/cbdv.202200518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Two series of piperazine-linked bis(chromene) hybrids that are attached to pyrazole units were synthesized in the current study. Both series are attached to an acyl unit at pyrazole-C3, with one series attached to an acetyl unit and the other to an ethoxycarbonyl unit. A [3+2] cycloaddition protocol was conducted to produce the target hybrids with good yields by reacting the appropriate hydrazonoyl chlorides with chromene-based bis(enaminone) in dioxane containing triethylamine at reflux for 4 h. New hybrids were tested for acetylcholinesterase inhibitory activity at concentrations of 15 and 25 μM, as well as their ability to quench 2,2-diphenylpicrylhydrazyl (DPPH) free radicals at a concentration of 25 μg/mL. In general, the inhibitory activity is related to the electronic properties of the para-substituent that is attached to the arene unit at pyrazole-N1. Furthermore, the acyl unit attached to pyrazole-C3 has a significant effect on the new hybrids' inhibitory activity. At the previous concentrations, the (3-acetylpyrazole)-linked hybrid attached to p-NO2 units demonstrated the best acetylcholinesterase inhibitory activity, with inhibition percentages of 79.7 and 90.2. Furthermore, the previous hybrid demonstrated the most effective DPPH inhibitory activity, with an inhibition percentage of 87.5.
Collapse
Affiliation(s)
- Ahmed E M Mekky
- Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Sherif M H Sanad
- Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
16
|
Synthesis and Molecular Docking of Some Novel 3-Thiazolyl-Coumarins as Inhibitors of VEGFR-2 Kinase. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020689. [PMID: 36677750 PMCID: PMC9861390 DOI: 10.3390/molecules28020689] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
One crucial strategy for the treatment of breast cancer involves focusing on the Vascular Endothelial Growth Factor Receptor (VEGFR-2) signaling system. Consequently, the development of new (VEGFR-2) inhibitors is of the utmost importance. In this study, novel 3-thiazolhydrazinylcoumarins were designed and synthesized via the reaction of phenylazoacetylcoumarin with various hydrazonoyl halides and α-bromoketones. By using elemental and spectral analysis data (IR, 1H-NMR, 13C-NMR, and Mass), the ascribed structures for all newly synthesized compounds were clarified, and the mechanisms underlying their formation were delineated. The molecular docking studies of the resulting 6-(phenyldiazenyl)-2H-chromen-2-one (3, 6a-e, 10a-c and 12a-c) derivatives were assessed against VEGFR-2 and demonstrated comparable activities to that of Sorafenib (approved medicine) with compounds 6d and 6b showing the highest binding scores (-9.900 and -9.819 kcal/mol, respectively). The cytotoxicity of the most active thiazole derivatives 6d, 6b, 6c, 10c and 10a were investigated for their human breast cancer (MCF-7) cell line and normal cell line LLC-Mk2 using MTT assay and Sorafenib as the reference drug. The results revealed that compounds 6d and 6b exhibited greater anticancer activities (IC50 = 10.5 ± 0.71 and 11.2 ± 0.80 μM, respectively) than the Sorafenib reference drug (IC50 = 5.10 ± 0.49 μM). Therefore, the present study demonstrated that thiazolyl coumarins are potential (VEGFR-2) inhibitors and pave the way for the synthesis of additional libraries based on the reported scaffold, which could eventually lead to the development of efficient treatment for breast cancer.
Collapse
|
17
|
Osman NA, El-Sayed NS, Abdel Fattah HA, Almalki AJ, Kammoun AK, Ibrahim TS, Alharbi AS, Al-Mahmoudy AM. Design, Synthesis and Anticancer Evaluation of New 1-allyl-4-oxo-6-(3,4,5- trimethoxyphenyl)-1,4-dihydropyrimidine-5-carbonitrile Bearing Pyrazole Moieties. Curr Org Synth 2023; 20:897-909. [PMID: 36941818 DOI: 10.2174/1570179420666230320153649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 03/23/2023]
Abstract
AIM pyrimidine and pyrazole have various biological and pharmaceutical applications such as antibacterial, antifungal, antileishmanial, anti-inflammatory, antitumor, and anti-cancer. INTRODUCTION In this search, the goal is to prepare pyrimidine-pyrazoles and study their anticancer activity. METHODS 1-allyl-4-oxo-6-(3,4,5-trimethoxyphenyl)-1,4-dihydropyrimidine-5-carbonitrile bearing pyrazoles (4,6-8) have been synthesized. Firstly, the reaction of 1-allyl-2-(methylthio)-4-oxo-6- (3,4,5-trimethoxyphenyl)-1,4-dihydropyrimidine-5-carbonitrile (1) with chalcones 2a-b produced the intermediates 3a-b. The latter was reacted with hydrazine hydrate to give the targets 4a-b. On the other hand, hydrazinolysis of compound 1 yielded the hydrazino derivative 5 which upon reaction with chalcones 2c-i or 1,3-bicarbonyl compounds afforded the compounds 6-8. Finally, the new compounds were characterized by spectral data (IR, 1H NMR, 13C NMR) and elemental analysis. Moreover, they were evaluated for Panc-1, MCF-7, HT-29, A-549, and HPDE cell lines as anticancer activity. RESULTS All the tested compounds 3,4,6-8 showed IC50 values > 50 μg/mL against the HPDE cell line. Compounds 6a and 6e exhibited potent anticancer activity where the IC50 values in the range of 1.7- 1.9, 1.4-182, 1.75-1.8, and 1.5-1.9 μg/mL against Panc-1, MCF-7, HT-29, and A-549 cell lines. CONCLUSION New pyrimidine-pyrazole derivatives were simply synthesized, in addition, some of them showed potential anticancer activity.
Collapse
Affiliation(s)
- Nermine A Osman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig, University, Zagazig, 44519, Egypt
| | - Nermine S El-Sayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig, University, Zagazig, 44519, Egypt
- Mansoura University Hospital, Mansoura University, Mansoura, Egypt
| | - Hanan A Abdel Fattah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig, University, Zagazig, 44519, Egypt
| | - Ahmad J Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmed K Kammoun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdulrahman S Alharbi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany M Al-Mahmoudy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig, University, Zagazig, 44519, Egypt
| |
Collapse
|
18
|
Nossier ES, Alasfoury RA, Hagras M, El-Manawaty M, Sayed SM, Ibrahim IM, Elkady H, Eissa IH, Elzahabi HS. Modified pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as EGFRWT and EGFRT790M inhibitors: Design, synthesis, and anti-cancer evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
19
|
Elzahabi HSA, Nossier ES, Alasfoury RA, El-Manawaty M, Sayed SM, Elkaeed EB, Metwaly AM, Hagras M, Eissa IH. Design, synthesis, and anti-cancer evaluation of new pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as potential EGFRWT and EGFRT790M inhibitors and apoptosis inducers. J Enzyme Inhib Med Chem 2022; 37:1053-1076. [PMID: 35821615 PMCID: PMC9291687 DOI: 10.1080/14756366.2022.2062752] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A new series of pyrido[2,3-d]pyrimidin-4(3H)-one derivatives having the essential pharmacophoric features of EGFR inhibitors has been designed and synthesised. Cell viability screening was performed for these compounds against A-549, PC-3, HCT-116, and MCF-7 cell lines at a dose of 100 μM. The highest active derivatives (8a, 8 b, 8d, 9a, and 12b) were selected for IC50 screening. Compounds 8a, 8 b, and 9a showed the highest cytotoxic activities and were further investigated for wild EGFRWT and mutant EGFRT790M inhibitory activities. Compound 8a showed the highest inhibitory activities against EGFRWT and EGFRT790M with IC50 values of 0.099 and 0.123 µM, respectively. In addition, it arrested the cell cycle at pre-G1 phase and induced a significant apoptotic effect in PC-3 cells. Furthermore, compound 8a induced a 5.3-fold increase in the level of caspase-3 in PC-3 cells. Finally, docking studies were carried out to examine the binding mode of the synthesised compounds against both EGFRWT and EGFRT790M.
Collapse
Affiliation(s)
- Heba S A Elzahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Eman S Nossier
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rania A Alasfoury
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - May El-Manawaty
- Pharmacognosy Department, National Research Centre, Dokki, Cairo, Egypt
| | - Sara M Sayed
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.,Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Mohamed Hagras
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
20
|
Zuo Y, Li R, Zhang Y, Bao G, Le Y, Yan L. Design, synthesis and antitumor activity of 5-trifluoromethylpyrimidine derivatives as EGFR inhibitors. J Enzyme Inhib Med Chem 2022; 37:2742-2754. [PMID: 36176072 PMCID: PMC9542405 DOI: 10.1080/14756366.2022.2128797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A new series of 5-trifluoromethylpyrimidine derivatives were designed and synthesised as EGFR inhibitors. Three tumour cells A549, MCF-7, PC-3 and EGFR kinase were employed to evaluate their biological activities. The results were shown that most of the target compounds existed excellent antitumor activities. In particular, the IC50 values of compound 9u (E)-3-((2-((4-(3-(3-fluorophenyl)acrylamido)phenyl)amino)-5-(trifluoromethyl)pyrimidin-4-yl)amino)-N-methylthiophene-2-carboxamide against A549, MCF-7, PC-3 cells and EGFR kinase reached to 0.35 μM, 3.24 μM, 5.12 μM, and 0.091 μM, respectively. Additionally, further researches revealed that compound 9u could induce early apoptosis of A549 cells and arrest the cells in G2/M phase. Taken together, these findings indicated that compound 9u was potential for developing as antitumor reagent.
Collapse
Affiliation(s)
- Yaqing Zuo
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China.,Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| | - Rongrong Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China.,Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| | - Yan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China.,Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| | - Guochen Bao
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Yi Le
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China.,Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| | - Longjia Yan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China.,Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| |
Collapse
|
21
|
Pyrazole derivatives as potent EGFR inhibitors: synthesis, biological evaluation and in silico and biodistribution study. Future Med Chem 2022; 14:1755-1769. [PMID: 36524436 DOI: 10.4155/fmc-2022-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: Synthesis of pyrazole derivatives as EGFR inhibitors. Materials & methods: Cytotoxicity and EGFR inhibitory effect were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and EGFR kits, respectively. The biodistribution of radioiodinated compound nanoparticles in tumor-bearing mice was studied. Results: The IC50 values of compound 4a against HepG2 cells and EGFR were 0.15 ± 0.03 and 0.31 ± 0.008 μM, respectively, while those of erlotinib were 0.73 ± 0.04 and 0.11 ± 0.008 μM, respectively. The binding scores of compound 4a and erlotinib to EGFR were -9.52 and -10.23 Kcal/mol, respectively. The maximum tumor uptake of radioiodinated compound after intravenous nanoparticle injection was 6.7 ± 0.3% radioactivity/g. Conclusion: Compound 4a is a promising antitumor agent with a potential EGFR inhibitory effect.
Collapse
|
22
|
Othman IM, Alamshany ZM, Tashkandi NY, Nossier ES, Anwar MM, Radwan HA. Chemical synthesis and molecular docking study of new thiazole, thiophene, and thieno[2,3-d]pyrimidine derivatives as potential antiproliferative and antimicrobial agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Novel pyrazolo[3,4-d]pyrimidines as potential anticancer agents: Synthesis, VEGFR-2 inhibition, and mechanisms of action. Biomed Pharmacother 2022; 156:113948. [DOI: 10.1016/j.biopha.2022.113948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022] Open
|
24
|
Mohamed Ahmed MS, Mekky AE, Sanad SM. Regioselective [3 + 2] cycloaddition synthesis and theoretical calculations of new chromene-pyrazole hybrids: A DFT-based Parr Function, Fukui Function, local reactivity indexes, and MEP analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Elganzory HH, Alminderej FM, El-Bayaa MN, Awad HM, Nossier ES, El-Sayed WA. Design, Synthesis, Anticancer Activity and Molecular Docking of New 1,2,3-Triazole-Based Glycosides Bearing 1,3,4-Thiadiazolyl, Indolyl and Arylacetamide Scaffolds. Molecules 2022; 27:molecules27206960. [PMID: 36296551 PMCID: PMC9611297 DOI: 10.3390/molecules27206960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022] Open
Abstract
New 1,3,4-thiadiazole thioglycosides linked to a substituted arylidine system were synthesized via heterocyclization via click 1,3-dipolar cycloaddition. The click strategy was used for the synthesis of new 1,3,4-thiadiazole and 1,2,3-triazole hybrid glycoside-based indolyl systems as novel hybrid molecules by reacting azide derivatives with the corresponding acetylated glycosyl terminal acetylenes. The cytotoxic activities of the compounds were studied against HCT-116 (human colorectal carcinoma) and MCF-7 (human breast adenocarcinoma) cell lines using the MTT assay. The results showed that the key thiadiazolethione compounds, the triazole glycosides linked to p-methoxyarylidine derivatives and the free hydroxyl glycoside had potent activity comparable to the reference drug, doxorubicin, against MCF-7 human cancer cells. Docking simulation studies were performed to check the binding patterns of the synthesized compounds. Enzyme inhibition assay studies were also conducted for the epidermal growth factor receptor (EGFR), and the results explained the activity of a number of derivatives.
Collapse
Affiliation(s)
- Hussein H. Elganzory
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Correspondence: (F.M.A.); (M.N.E.-B.)
| | - Mohamed N. El-Bayaa
- Photochemistry Department, National Research Centre, Cairo 12622, Egypt
- Correspondence: (F.M.A.); (M.N.E.-B.)
| | - Hanem M. Awad
- Tanning Materials and Leather Technology Department, National Research Centre, El-Behouth St, Dokki, Cairo 12622, Egypt
| | - Eman S. Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Wael A. El-Sayed
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Tanning Materials and Leather Technology Department, National Research Centre, El-Behouth St, Dokki, Cairo 12622, Egypt
| |
Collapse
|
26
|
New 1,2,3-Triazole-Coumarin-Glycoside Hybrids and Their 1,2,4-Triazolyl Thioglycoside Analogs Targeting Mitochondria Apoptotic Pathway: Synthesis, Anticancer Activity and Docking Simulation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175688. [PMID: 36080455 PMCID: PMC9458111 DOI: 10.3390/molecules27175688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022]
Abstract
Toxicity and resistance to newly synthesized anticancer drugs represent a challenging phenomenon of intensified concern arising from variation in drug targets and consequently the prevalence of the latter concern requires further research. The current research reports the design, synthesis, and anticancer activity of new 1,2,3-triazole-coumarin-glycosyl hybrids and their 1,2,4-triazole thioglycosides as well as acyclic analogs. The cytotoxic activity of the synthesized products was studied against a panel of human cancer cell lines. Compounds 8, 10, 16 and 21 resulted in higher activities against different human cancer cells. The impact of the hybrid derivative 10 upon different apoptotic protein markers, including cytochrome c, Bcl-2, Bax, and caspase-7 along with its effect on the cell cycle was investigated. It revealed a mitochondria-apoptotic effect on MCF-7 cells and had the ability to upregulate pro-apoptotic Bax protein and downregulate anti-apoptotic Bcl-2 protein and thus implies the apoptotic fate of the cells. Furthermore, the inhibitory activities against EGFR, VEGFR-2 and CDK-2/cyclin A2 kinases for 8, 10 and 21 were studied to detect the mechanism of their high potency. The coumarin-triazole-glycosyl hybrids 8 and 10 illustrated excellent broad inhibitory activity (IC50= 0.22 ± 0.01, 0.93 ± 0.42 and 0.24 ± 0.20 μM, respectively, for compound 8), (IC50 = 0.12 ± 0.50, 0.79 ± 0.14 and 0.15± 0. 60 μM, respectively, for compound 10), in comparison with the reference drugs, erlotinib, sorafenib and roscovitine (IC50 = 0.18 ± 0.05, 1.58 ± 0.11 and 0.46 ± 0.30 μM, respectively). In addition, the docking study was simulated to afford better rationalization and put insight into the binding affinity between the promising derivatives and their targeted enzymes and that might be used as an optimum lead for further modification in the anticancer field.
Collapse
|
27
|
Radwan HA, Ahmad I, Othman IM, Gad-Elkareem MA, Patel H, Aouadi K, Snoussi M, Kadri A. Design, synthesis, in vitro anticancer and antimicrobial evaluation, SAR analysis, molecular docking and dynamic simulation of new pyrazoles, triazoles and pyridazines based isoxazole. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
New Quinazolin-4(3H)-one Derivatives Incorporating Hydrazone and Pyrazole Scaffolds as Antimicrobial Agents Targeting DNA Gyraze Enzyme. Sci Pharm 2022. [DOI: 10.3390/scipharm90030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present work includes the synthesis of a new series of quinazolin-4(3H)-one compounds (4a–f, 5a–d) as antimicrobial agents. The starting compound, 2-hydrazinylquinazolin-4(3H)-one (2), was synthesized and treated with different carbonyl compounds to afford the hydrazone derivatives 4a–f. In addition, the hydrazone derivatives 4a–d were treated with a DMF/POCl3 mixture to give the formyl-pyrazole derivatives 5a–d. All the target compounds were evaluated as antimicrobial agents against four bacterial and four fungal strains. The majority of the tested compounds showed potent antimicrobial activity compared with the reference antibiotics. The most potent antimicrobial activity was shown by 5a with MIC values in the range (1–16) μg/mL. In addition, the most potent compounds against E. coli were evaluated for their inhibitory activity against E. coli DNA gyrase, whereas the target compounds 4a, 5a, 5c, and 5d showed the most potent inhibition to the target enzyme with IC50 values ranging from 3.19 to 4.17 µM. Furthermore, molecular docking studies were performed for the most active compounds against the target E. coli DNA gyrase to determine their binding affinity within the enzyme’s active site. Moreover, ADME evaluations of these compounds predicted their high oral bioavailability and good GI absorption.
Collapse
|
29
|
Sanad SMH, Mekky AEM. [3 + 2] Cycloaddition synthesis of new (nicotinonitrile-chromene) hybrids linked to pyrazole units as potential acetylcholinesterase inhibitors. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2109974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
| | - Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
30
|
Synthesis and biological evaluation of new 1,3,4-thiadiazole derivatives as potent antimicrobial agents. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
AbstractA series of 1,3,4-thiadiazole derivatives were designed and synthesized using N-(4-nitrophenyl)acetohydrazonoyl bromide and 1-[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethan-1-one as starting materials. The treatment of 1-[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethan-1-one with methyl hydrazinecarbodithioate or hydrazinecarbothioamide afforded 2-[1-[5-methyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethylidene]hydrazine derivatives. The targeted 1,3,4-thiadiazolyl derivatives were prepared by the reaction of 2-[1-[5-methyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]ethylidene]hydrazine derivatives with hydrazonoyl chloride derivatives. The reaction of N-(4-nitrophenyl)acetohydrazonoyl bromide with 2-[(methylthio)carbonthioyl]hydrazones in absolute ethanol in the presence of triethylamine afforded the corresponding 1,3,4-thiadiazole derivatives. The newly synthesized compounds were fully characterized by 1H NMR, 13C NMR, IR, MS, and elemental analysis. Moreover, the antimicrobial activity of the synthesized 1,3,4-thiadiazole derivatives were tested against E. coli, B. mycoides, and C. albicans. Four compounds outperformed the other produced compounds in terms of antimicrobial activity.
Graphical abstract
Collapse
|
31
|
Anandu KR, Jayan AP, Aneesh TP, Saiprabha VN. Pyrimidine derivatives as EGFR tyrosine kinase inhibitors in NSCLC: - A comprehensive review. Chem Biol Drug Des 2022; 100:599-621. [PMID: 35883248 DOI: 10.1111/cbdd.14124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
EGFR positive NSCLC due to primary mutation (EGFR DEL19 & L858R) has been recognized as a crucial mediator of tumor progression. This led to the development and approval of EGFR tyrosine kinase inhibitors which addresses EGFR mediated NSCLC but fail to show potency after initial months of therapy due to acquired resistance (EGFR T790M, EGFR C797S). Extensive research allowed identification of drugs for EGFR positive NSCLC, wherein the majority of compounds have a pyrimidine substructure offering marked therapeutic benefits compared to chemotherapy. This current review outlines the diverse pyrimidine derivatives with amino-linked and fused pyrimidine scaffolds such as furo-pyrimidine, pyrimido-pyrimidine, thieno-pyrimidine, highlighting pyrimidine EGFR TK inhibitors reported in research emphasizing structural aspects, design approaches, inhibition potential. selectivity profile towards mutant EGFR conveyed through biological evaluation studies. Furthermore, mentioning the in-silico interaction profile of synthesized compounds for evaluating the binding affinity with key amino acids. The epilogue of review focuses on the recent research that drives forward to aid in the discovery and development of substituted amino and fused scaffolds of pyrimidine that can counteract the mutations and effectively manage EGFR positive NSCLC.
Collapse
Affiliation(s)
- K R Anandu
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Ajay P Jayan
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - T P Aneesh
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - V N Saiprabha
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| |
Collapse
|
32
|
Alamshany ZM, Tashkandi NY, Othman IMM, Anwar MM, Nossier ES. New thiophene, thienopyridine and thiazoline-based derivatives: Design, synthesis and biological evaluation as antiproliferative agents and multitargeting kinase inhibitors. Bioorg Chem 2022; 127:105964. [PMID: 35759881 DOI: 10.1016/j.bioorg.2022.105964] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
Multitargeting kinase inhibitors recently proved to be a profitable approach for conquering cancer proliferation. The current study represents the design and synthesis of new thiophene, thienopyridine, and thiazoline-based derivatives 4-14a,b. All the target compounds were examined in vitro against three cancer cell lines; the liver (HepG-2), breast (MCF-7), and colon (HCT-116) where the thiophene-based compounds 5a-c, demonstrated the most potent activity. Furthermore, the latter derivatives revealed a safety profile against WI-38 normal cell line of selectivity indices ranging from 4.43 to 17.44. In vitro enzyme assay of 5a-c revealed that the carbohydrazide analog 5c has the most promising multitargeting inhibiting activity against Pim-1, VEGFR-2, and EGFRWT enzymes of IC50 values; 0.037 ± 0.02, 0.95 ± 0.24, and 0.16 ± 0.05 µM, respectively. As it was the most potent analog, 5c was further subjected to cell cycle and apoptosis analysis. The results indicated that it induced preG1 arrest and an apoptotic effect in the early and late stages. Moreover, further apoptosis studies were carried out for 5c to evaluate its proapoptotic potential. Interestingly, 5c enhanced the levels of Bax/Bcl-2 ratio, p53, and active caspase 3 by 18, 6.4, and 24 folds, respectively compared to the untreated cells. The antimicrobial evaluation showed that only compounds 3 and 5a produced broad-spectrum potency, while 5b and 5c exhibited outstanding antifungal effects. Finally, a molecular docking study was carried out to discover the probable interactions of compound 5c with the active sites of Pim-1, VEGFR-2, and EGFRWT kinases.
Collapse
Affiliation(s)
- Zahra M Alamshany
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21551, P.O. Box 42805, Saudi Arabia
| | - Nada Y Tashkandi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21551, P.O. Box 42805, Saudi Arabia
| | - Ismail M M Othman
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Eman S Nossier
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt.
| |
Collapse
|
33
|
Yadav TT, Moin Shaikh G, Kumar MS, Chintamaneni M, YC M. A Review on Fused Pyrimidine Systems as EGFR Inhibitors and Their Structure–Activity Relationship. Front Chem 2022; 10:861288. [PMID: 35769445 PMCID: PMC9234326 DOI: 10.3389/fchem.2022.861288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/28/2022] [Indexed: 01/05/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) belongs to the family of tyrosine kinase that is activated when a specific ligand binds to it. The EGFR plays a vital role in the cellular proliferation process, differentiation, and apoptosis. In the case of cancer, EGFR undergoes uncontrolled auto-phosphorylation that results in increased cellular proliferation and decreased apoptosis, causing cancer promotion. From the literature, it shows that pyrimidine is one of the most commonly studied heterocycles for its antiproliferative activity against EGFR inhibition. The authors have collated some interesting results in the heterocycle-fused pyrimidines that have been studied using different cell lines (sensitive and mutational) and in animal models to determine their activity and potency. It is quite clear that the fused systems are highly effective in inhibiting EGFR activity in cancer cells. Therefore, the structure–activity relationship (SAR) comes into play in determining the nature of the heterocycle and the substituents that are responsible for the increased activity and toxicity. Understanding the SAR of heterocycle-fused pyrimidines will help in getting a better overview of the molecules concerning their activity and potency profile as future EGFR inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Mayur YC
- *Correspondence: Mayur YC, mayur
| |
Collapse
|
34
|
Fabitha K, Chandrakanth M, Pramod RN, Arya CG, Li Y, Banothu J. Recent Developments in the Synthesis of Indole‐Pyrazole Hybrids. ChemistrySelect 2022. [DOI: 10.1002/slct.202201064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- K. Fabitha
- Department of Chemistry National Institute of Technology Calicut Kozhikode 673601 Kerala India
| | - Munugala Chandrakanth
- Department of Chemistry National Institute of Technology Calicut Kozhikode 673601 Kerala India
| | - Rakendu N. Pramod
- Department of Chemistry National Institute of Technology Calicut Kozhikode 673601 Kerala India
| | - C. G. Arya
- Department of Chemistry National Institute of Technology Calicut Kozhikode 673601 Kerala India
| | - Yupeng Li
- Masonic Cancer Center and Department of Medicinal Chemistry University of Minnesota Minneapolis Minnesota 55455 United States
| | - Janardhan Banothu
- Department of Chemistry National Institute of Technology Calicut Kozhikode 673601 Kerala India
| |
Collapse
|
35
|
Essa BM, Selim AA, Sayed GH, Anwer KE. Conventional and microwave-assisted synthesis, anticancer evaluation, 99mTc-coupling and In-vivo study of some novel pyrazolone derivatives. Bioorg Chem 2022; 125:105846. [PMID: 35512493 DOI: 10.1016/j.bioorg.2022.105846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022]
Abstract
New pyrazolone derivatives were successfully synthesized by both microwave-assisted and conventional techniques. Compound 3 (3-(3-Methyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl)-3-oxopropanehydrazide) displayed remarkable anti-cancer activity (IC50 obtained at 8.71 and 10.63 µM for HCT-116 and MCF-7, respectively. Moreover, biodistribution study using radiolabeling approach revealed a remarked uptake of [99mTc]Tc-compound 3 complex into tumour induced in mice. The biodistribution showed high accumulation in tumour tissues with T/NT of 6.92 after 60 min post injection. As a result of these promising data, the newly synthesized compounds especially compound 3 affords a potential radio-carrier that could be used as a tumour marker and can be used for cancer therapy after further preclinical studies.
Collapse
Affiliation(s)
- Basma M Essa
- Radioactive Isotopes and Generators Department, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Adli A Selim
- Labelled Compounds Department, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt.
| | - Galal H Sayed
- Heterocyclic Synthesis Lab., Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt
| | - Kurls E Anwer
- Heterocyclic Synthesis Lab., Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt
| |
Collapse
|
36
|
Novel 1,2,3-Triazole-Coumarin Hybrid Glycosides and Their Tetrazolyl Analogues: Design, Anticancer Evaluation and Molecular Docking Targeting EGFR, VEGFR-2 and CDK-2. Molecules 2022; 27:molecules27072047. [PMID: 35408446 PMCID: PMC9000887 DOI: 10.3390/molecules27072047] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
This study represents the design and synthesis of a new set of triazole-coumarin-glycosyl hybrids and their tetrazole hybrid analogues possessing various sugar moieties and modified analogues. All the newly synthesized derivatives were screened for their cytotoxic activities against a panel of human cancer cell lines. The coumarin derivatives 10, 13 and 15 derivatives revealed potent cytotoxic activities against Paca-2, Mel-501, PC-3 and A-375 cancer cell lines. These promising analogues were further examined for their inhibitory assessment against EGFR, VEGFR-2 and CDK-2/cyclin A2 kinases. The coumarin-tetrazole 10 displayed broad superior inhibitory activity against all screened enzymes compared with the reference drugs, erlotinib, sorafenib and roscovitine, respectively. The impact of coumarin-tetrazole 10 upon cell cycle and apoptosis induction was determined to detect its mechanism of action. Additionally, it upregulated the levels of casp-3, casp-7 and cytochrome-c proteins and downregulated the PD-1 level. Finally, molecular docking study was simulated to afford better rationalization and gain insight into the binding affinity between the promising derivatives and their targeted enzymes, which could be used as an optimum lead for further modification in the anticancer field.
Collapse
|
37
|
Hashem HE, Amr AEGE, Nossier ES, Anwar MM, Azmy EM. New Benzimidazole-, 1,2,4-Triazole-, and 1,3,5-Triazine-Based Derivatives as Potential EGFR WT and EGFR T790M Inhibitors: Microwave-Assisted Synthesis, Anticancer Evaluation, and Molecular Docking Study. ACS OMEGA 2022; 7:7155-7171. [PMID: 35252706 PMCID: PMC8892849 DOI: 10.1021/acsomega.1c06836] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/24/2022] [Indexed: 06/12/2023]
Abstract
A new series of benzimidazole, 1,2,4-triazole, and 1,3,5-triazine derivatives were designed and synthesized using a microwave irradiation synthetic approach utilizing 2-phenylacetyl isothiocyanate (1) as a key starting material. All the new analogues were evaluated as anticancer agents against a panel of cancer cell lines utilizing doxorubicin as a standard drug. Most of the tested derivatives exhibited selective cytotoxic activity against MCF-7 and A-549 cancer cell lines. Furthermore, the new target compounds 5, 6, and 7 as the most potent antiproliferative agents have been assessed as in vitro EGFRWT and EGFRT790M inhibitors compared to the reference drugs erlotinib and AZD9291. They represented more potent suppression activity against the mutated EGFRT790M than the wild-type EGFRWT. Moreover, the compounds 5, 6, and 7 down-regulated the oncogenic parameter p53 ubiquitination. A docking simulation of compound 6b was carried out to correlate its molecular structure with its significant EGFR inhibition potency and its possible binding interactions within the active site of EGFRWT and the mutant EGFRT790M.
Collapse
Affiliation(s)
- Heba E. Hashem
- Department
of Chemistry, Faculty of Women, Ain Shams
University, Heliopolis, Cairo 11757, Egypt
| | - Abd El-Galil E. Amr
- Pharmaceutical
Chemistry Department, Drug Exploration & Development Chair (DEDC),
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Applied
Organic Chemistry Department, National Research
Center, Dokki, Cairo 12622, Egypt
| | - Eman S. Nossier
- Pharmaceutical
Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy
(Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Manal M. Anwar
- Department
of Therapeutic Chemistry, National Research
Centre, Dokki, Cairo 12622, Egypt
| | - Eman M. Azmy
- Department
of Chemistry, Faculty of Women, Ain Shams
University, Heliopolis, Cairo 11757, Egypt
| |
Collapse
|
38
|
Kamel MG, Sroor FM, Othman AM, Mahrous KF, Saleh FM, Hassaneen HM, Abdallah TA, Abdelhamid IA, Teleb MAM. Structure-based design of novel pyrazolyl–chalcones as anti-cancer and antimicrobial agents: synthesis and in vitro studies. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-021-02886-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
39
|
Othman IMM, Alamshany ZM, Tashkandi NY, Gad-Elkareem MAM, Abd El-Karim SS, Nossier ES. Synthesis and biological evaluation of new derivatives of thieno-thiazole and dihydrothiazolo-thiazole scaffolds integrated with a pyrazoline nucleus as anticancer and multi-targeting kinase inhibitors. RSC Adv 2022; 12:561-577. [PMID: 35424523 PMCID: PMC8694192 DOI: 10.1039/d1ra08055e] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
Deregulation of various protein kinases is considered as one of the important factors resulting in cancer development and metastasis, thus multi-targeting the kinase family is one of the most important strategies in current cancer therapy. This context represents the design and synthesis of two sets of derivatives bearing a pyrazoline-3-one ring conjugated either with a thieno[3,2-d]thiazole or with a dihydrothiazolo[4,5-d]thiazole scaffold via an NH linker, 3a–d and 5a–d respectively, using the pyrazolinone–thiazolinone derivative 1 as a key precursor. All the newly synthesized compounds were assessed in vitro for their anticancer activity against two cancer cell lines (MCF-7 and HepG-2). The safety profile of the most active cytotoxic candidates 1 and 3c was further examined against the normal cell line WI-38. The compounds 1 and 3c were further evaluated as multi-targeting kinase inhibitors against EGFR, VEGFR-2 and BRAFV600E, exhibiting promising suppression impact. Additionally, the latter compounds were investigated for their impact on cell cycle and apoptosis induction potential in the MCF-7 cell line. Moreover, the antimicrobial activity of all the new analogues was evaluated against a panel of Gram-positive and Gram-negative bacteria, yeast and fungi in comparison to streptomycin and amphotericin-B as reference drugs. Interestingly, both 1 and 3c showed the most promising microbial inhibitory effect. Molecular docking studies showed promising binding patterns of the compounds 1 and 3c with the prospective targets, EGFR, VEGFR-2 and BRAFV600E. Finally, additional toxicity studies were performed for the new derivatives which showed their good drug-like properties and low toxicity risks in humans. Deregulation of various protein kinases is considered as one of the important factors resulting in cancer development and metastasis, thus multi-targeting the kinase family is one of the most important strategies in current cancer therapy.![]()
Collapse
Affiliation(s)
- Ismail M. M. Othman
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Zahra M. Alamshany
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 42805, Jeddah 21551, Saudi Arabia
| | - Nada Y. Tashkandi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 42805, Jeddah 21551, Saudi Arabia
| | | | - Somaia S. Abd El-Karim
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Eman S. Nossier
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| |
Collapse
|
40
|
Khattab RR, Hassan AA, A Osman DA, Abdel-Megeid FM, Awad HM, Nossier ES, El-Sayed WA. Synthesis, anticancer activity and molecular docking of new triazolo[4,5- d]pyrimidines based thienopyrimidine system and their derived N-glycosides and thioglycosides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:1090-1113. [PMID: 34496727 DOI: 10.1080/15257770.2021.1975297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A series of new substituted triazolo[4,5-d]pyrimidine derivatives linked to thienopyrimidine ring system were prepared as a hybrid heterocyclic systems, as possible nucleobases analogs, starting from the key carboxamide derivative 2 and its azide precursor via heterocyclization reactions and their structures were characterized. Glycosylation of the prepared triazolopyrimidine derivatives was performed and afforded, regioselctively, the corresponding thienopyrimidine-triazolopyrimidine hybrid N1-glycosides and their thioglycoside analogues in good yields. The synthesized glycosyl heterocycles were studied for their cytotoxic activity against HepG-2 and MCF-7 human cancer cells and significant results were obtained. Compounds 7a, 8 b, 9 b, 9a and 7 b demonstrated promising activities comparable to the activity of the doxorubicin for (HepG-2) cell line. Furthermore, a number of the afforded triazolopyrimidine glycosides were found potent against cancer cells (MCF-7). Furthermore, docking simulation the promising thienopyrimidine analogues 7-13 was done against EGFR kinase to provide a binding model that could serve in discovery of further anticancer agents.
Collapse
Affiliation(s)
- Reham R Khattab
- Photochemistry Department (Synthetic Unit), National Research Centre, Cairo, Egypt
| | - Allam A Hassan
- Chemistry Department, Faculty of Science, Suez University, Suez, Egypt.,Medical Laboratories Department, Applied Medical Science, Shaqra University, Shaqra, Saudi Arabia
| | - Dalia A A Osman
- Photochemistry Department (Synthetic Unit), National Research Centre, Cairo, Egypt
| | | | - Hanem M Awad
- Tanning Materials and Leather Technology Department, National Research Centre, Cairo, Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Wael A El-Sayed
- Photochemistry Department (Synthetic Unit), National Research Centre, Cairo, Egypt.,Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|