1
|
Kunjiappan S, Panneerselvam T, Pavadai P, Balakrishnan V, Pandian SRK, Palanisamy P, Sankaranarayanan M, Kabilan SJ, Sundaram GA, Tseng WL, Kumar ASK. Fabrication of folic acid-conjugated pyrimidine-2(5H)-thione-encapsulated curdlan gum-PEGamine nanoparticles for folate receptor targeting breast cancer cells. Int J Biol Macromol 2024; 277:134406. [PMID: 39097067 DOI: 10.1016/j.ijbiomac.2024.134406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
In this study 5-((2-((3-methoxy benzylidene)-amino)-phenyl)-diazenyl)-4,6-diphenyl pyrimidine-2(5H)-thione was synthesized. The pharmacological applications of pyrimidine analogs are restricted due to their poor pharmacokinetic properties. As a solution, a microbial exopolysaccharide (curdlan gum) was used to synthesize folic acid-conjugated pyrimidine-2(5H)-thione-encapsulated curdlan gum-PEGamine nanoparticles (FA-Py-CG-PEGamine NPs). The results of physicochemical properties revealed that the fabricated FA-Py-CG-PEGamine NPs were between 100 and 400 nm in size with a majorly spherical shaped, crystalline nature, and the encapsulation efficiency and loading capacity were 79.04 ± 0.79 %, and 8.12 ± 0.39 % respectively. The drug release rate was significantly higher at pH 5.4 (80.14 ± 0.79 %) compared to pH 7.2. The cytotoxic potential of FA-Py-CG-PEGamine NPs against MCF-7 cells potentially reduced the number of cells after 24 h with 42.27 μg × mL-1 as IC50 value. The higher intracellular accumulation of pyrimidine-2(5H)-thione in MCF-7 cells leads to apoptosis, observed by AO/EBr staining and flow cytometry analysis. The highest pyrimidine-2(5H)-thione internalization in MCF-7 cells may be due to folate conjugated on the surface of curdlan gum nanoparticles. Further, internalized pyrimidine-2(5H)-thione increases the intracellular ROS level, leading to apoptosis and inducing the decalin in mitochondrial membrane potential. These outcomes demonstrated that the FA-Py-CG-PEGamine NPs were specificity-targeting folate receptors on the plasma membranes of MCF-7 Cells.
Collapse
Affiliation(s)
- Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamilnadu, India.
| | - Theivendren Panneerselvam
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Elayampalayam, Namakkal 637205, Tamilnadu, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Vanavil Balakrishnan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamilnadu, India
| | - Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamilnadu, India
| | - Ponnusamy Palanisamy
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani-333031, Rajasthan, India
| | | | - Ganeshraja Ayyakannu Sundaram
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Chennai 600 077, Tamilnadu, India
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung city 80424, Taiwan; School of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung city 80708, Taiwan
| | | |
Collapse
|
2
|
Bhatia N, Thareja S. Aromatase inhibitors for the treatment of breast cancer: An overview (2019-2023). Bioorg Chem 2024; 151:107607. [PMID: 39002515 DOI: 10.1016/j.bioorg.2024.107607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Aromatase inhibition is considered a legitimate approach for the treatment of ER-positive (ER+) breast cancer as it accounts for more than 70% of breast cancer cases. Aromatase inhibitor therapy has been demonstrated to be highly effective in decreasing tumour size, increasing survival rates, and lowering the chance of cancer recurrence. The present review deliberates the pathophysiology and the role of aromatase in estrogen biosynthesis. Estrogen biosynthesis, various androgens, and their function in the human body have also been discussed. The salient aspects of the aromatase active site, its mode of action, and AIs, along with their intended interactions with presently FDA-approved inhibitors, have been briefly discussed. It has been detailed how different reported AIs were designed, their SAR investigations, in silico analysis, and biological evaluations. Various AIs from multiple origins, such as synthetic and semi-synthetic, have also been discussed.
Collapse
Affiliation(s)
- Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
3
|
da Silva FC, Martinho ACC, Ferreira HSV, Siqueira RP, Arruda VM, Guerra JFDC, de Souza MLDR, Landin ES, Rezende Júnior CDO, de Araújo TG. A Novel Compound from the Phenylsulfonylpiperazine Class: Evaluation of In Vitro Activity on Luminal Breast Cancer Cells. Molecules 2024; 29:4471. [PMID: 39339466 PMCID: PMC11433764 DOI: 10.3390/molecules29184471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Breast cancer (BC) is the most common cancer in women, and is characterized by its histological and molecular heterogeneity. Luminal BC is an estrogen receptor-positive subtype, with varied clinical courses. Although BC patients are eligible for hormone therapy, both early and late relapses still occur, and thus there is a demand for new cytotoxic and selective treatment strategies for these patients. In the present study, inspired by the structure of phenylsulfonylpiperazine, a series of 20 derivatives were tested in bioassays against MCF7, MDA-MB-231 and MDA-MB-453 BC cells to discover new hit compounds. After 48 h of treatment, 12 derivatives impaired cell viability and presented significant IC50 values against at least one of the tumor lineages. Overall, the luminal BC cell line MCF7 was more sensitive to treatments. Compound 3, (4-(1H-tetrazol-1-yl)phenyl)(4-((4-chlorophenyl)sulfonyl)piperazin-1-yl)methanone, was the most promising, with IC50 = 4.48 μM and selective index (SI) = 35.6 in MCF7 cells. Compound 3 also presented significant antimigratory and antiproliferative activities against luminal BC cells, possibly by affecting the expression of genes involved in the epithelial-mesenchymal transition mechanism, upregulating E-Cadherin transcripts (CDH1). Our findings suggest that phenylsulfonylpiperazine derivatives are potential candidates for the development of new therapies, especially those targeting luminal BC.
Collapse
Affiliation(s)
- Fernanda Cardoso da Silva
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil
| | - Ana Clara Cassiano Martinho
- Laboratory of Drug Candidate Synthesis, Institute of Chemistry, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil
| | - Raoni Pais Siqueira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil
| | - Vinicius Marques Arruda
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil
- Laboratory of Biochemistry, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil
| | - Joyce Ferreira da Costa Guerra
- Laboratory of Biochemistry, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil
| | - Maria Laura Dos Reis de Souza
- Laboratory of Drug Candidate Synthesis, Institute of Chemistry, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil
| | - Emanuelly Silva Landin
- Laboratory of Drug Candidate Synthesis, Institute of Chemistry, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil
| | - Celso de Oliveira Rezende Júnior
- Laboratory of Drug Candidate Synthesis, Institute of Chemistry, Universidade Federal de Uberlândia, Uberlândia 38400-902, MG, Brazil
| | - Thaise Gonçalves de Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlândia 38405-302, MG, Brazil
| |
Collapse
|
4
|
Gorbunova IA, Rogova A, Akhmetova DR, Sidorov RY, Priakhin EE, Makhmudov RR, Shipilovskikh DA, Epifanovskaya OS, Timin AS, Shipilovskikh SA. Design and one-pot synthesis of new substituted pyrrolo[1,2-a]thieno[3,2-e]pyrimidine as potential antitumor agents: in vitro and in vivo studies. Bioorg Chem 2024; 148:107468. [PMID: 38781670 DOI: 10.1016/j.bioorg.2024.107468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
A new efficient and versatile one-pot three-component synthesis of substituted pyrrolo[1,2-a]thieno[3,2-e]pyrimidine derivatives has been developed. It is based on a multistep cascade reaction from 2-aminothiophenes and 2-hydroxy-4-oxobut-2-enoic acids, and derivatives of cyanoacetic acid catalyzed by diisopropylethylamine. As a result, novel pyrrolo[1,2-a]thieno[3,2-e]pyrimidine derivatives (21 compounds) were synthesized in a mild reaction conditions with a high yield. The structures of the developed compounds were confirmed by NMR and elemental analysis. The influence of electron-withdrawing or electron-donor substituents on the antitumor activity of the developed compounds has been identified. In vitro screening analysis of 21 compounds revealed six lead candidates (12aa, 12dc, 12hc, 12ic, 12lb, and 12mb) that demonstrated the most significant antitumor activity against B16-F10, 4T1 and CT26 cells. Necrosis/apoptosis assay showed that apoptosis was the predominant mechanism of cell death. Molecular docking analysis revealed several potential targets for tested compounds, i.e. phosphatidylinositol 5-phosphate 4-kinase (PI5P4K2C), proto-oncogene serine/threonine-protein kinase (Pim-1), nicotinamide phosphoribosyltransferase (NAMPT) and dihydrofolate reductase (DHFR). The lead compound (12aa) can effectively induce cell apoptosis, possesses a high yield (98 %) and requires low-cost starting chemicals for its synthesis. In vivo experiments with melanoma-bearing mice confirmed that 12aa compound resulted in the significant tumor inhibition on 15 d after the therapy. In particular, tumor volume was ∼0.19 cm3 for 50 mg/kg versus ∼2.39 cm3 in case of untreated mice and tumor weight was ∼71.6 mg for 50 mg/kg versus ∼452.4 mg when considered untreated mice. Thus, our results demonstrated the high potential of the 12aa compound in the treatment of melanoma and can be recommended for further preclinical studies.
Collapse
Affiliation(s)
- Irina A Gorbunova
- ITMO University, Kronverksky Prospekt 49, St. Petersburg 191002, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Anna Rogova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Darya R Akhmetova
- ITMO University, Kronverksky Prospekt 49, St. Petersburg 191002, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Roman Yu Sidorov
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Ural Branch, Goleva 13, Perm 614081, Russian Federation; Perm State University, Perm, Bukireva 15, Perm 614990, Russian Federation
| | - Eugene E Priakhin
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation; St. Petersburg Academic University, St. Petersburg 194021, Russian Federation
| | - Ramiz R Makhmudov
- Perm State University, Perm, Bukireva 15, Perm 614990, Russian Federation
| | - Daria A Shipilovskikh
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation; Perm National Research Polytechnic University, 29 Komsomolsky Prospekt, Perm 614990, Russian Federation
| | - Olga S Epifanovskaya
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Lva Tolstogo 6/8, St. Petersburg 191144, Russian Federation
| | - Alexander S Timin
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
| | - Sergei A Shipilovskikh
- ITMO University, Kronverksky Prospekt 49, St. Petersburg 191002, Russian Federation; Perm State University, Perm, Bukireva 15, Perm 614990, Russian Federation.
| |
Collapse
|
5
|
El-Wakil MH, El-Dershaby HA, Ghazallah RA, El-Yazbi AF, Abd El-Razik HA, Soliman FSG. Identification of new 5-(2,6-dichlorophenyl)-3-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-7-carboxylic acids as p38α MAPK inhibitors: Design, synthesis, antitumor evaluation, molecular docking and in silico studies. Bioorg Chem 2024; 145:107226. [PMID: 38377818 DOI: 10.1016/j.bioorg.2024.107226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
In pursuit of discovering novel scaffolds that demonstrate potential inhibitory activity against p38α MAPK and possess strong antitumor effects, we herein report the design and synthesis of new series of 17 final target 5-(2,6-dichlorophenyl)-3-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-7-carboxylic acids (4-20). Chemical characterization of the compounds was performed using FT-IR, NMR, elemental analyses and mass spectra of some representative examples. With many compounds showing potential inhibitory activity against p38α MAPK, two derivatives, 8 and 9, demonstrated the highest activity (>70 % inhibition) among the series. Derivative 9 displayed IC50 value nearly 2.5 folds more potent than 8. As anticipated, they both showed explicit interactions inside the kinase active site with the key binding amino acid residues. Screening both compounds for cytotoxic effects, they exhibited strong antitumor activities against lung (A549), breast (MCF-7 and MDA MB-231), colon (HCT-116) and liver (Hep-G2) cancers more potent than reference 5-FU. Their noticeable strong antitumor activity pointed out to the possibility of an augmented DNA binding mechanism of antitumor action besides their kinase inhibition. Both 8 and 9 exhibited strong ctDNA damaging effects in nanomolar range. Further mechanistic antitumor studies revealed ability of compounds 8 and 9 to arrest cell cycle in MCF-7 cells at S phase, while in HCT-116 treated cells at G0-G1 and G2/M phases. They also displayed apoptotic induction effects in both MCF-7 and HCT-116 with total cell deaths more than control untreated cells in reference to 5-FU. Finally, the compounds were tested for their anti-migratory potential utilizing wound healing assay. They induced a significant decrease in wound closure percentage after 24 h treatment in the examined cancer cells when compared to untreated control MCF-7 and HCT-116 cells better than 5-FU. In silico computation of physicochemical parameters revealed the drug-like properties of 8 and 9 with no violation to Lipinski's rule of five as well as their tolerable ADMET parameters, thus suggesting their utilization as potential future drug leads amenable for further optimization and development.
Collapse
Affiliation(s)
- Marwa H El-Wakil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Hadeel A El-Dershaby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Rasha A Ghazallah
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria 21521, Egypt
| | - Amira F El-Yazbi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Heba A Abd El-Razik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Farid S G Soliman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
6
|
Janowska S, Holota S, Lesyk R, Wujec M. Aromatase Inhibitors as a Promising Direction for the Search for New Anticancer Drugs. Molecules 2024; 29:346. [PMID: 38257259 PMCID: PMC10819800 DOI: 10.3390/molecules29020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Aromatase is an enzyme that plays a crucial role in the biosynthesis of estrogens, which are hormones that contribute to the growth of certain types of breast cancer. In particular, aromatase catalyzes the conversion of androgens (male hormones) into estrogens (female hormones) in various tissues, including the adrenal glands, ovaries, and adipose tissue. Given the role of estrogen in promoting the growth of hormone-receptor-positive breast cancers, aromatase has become an important molecular target for the development of anticancer agents. Aromatase inhibitors can be classified into two main groups based on their chemical structure: steroidal and non-steroidal inhibitors. This work presents a review of the literature from the last ten years regarding the search for new aromatase inhibitors. We present the directions of search, taking into account the impact of structure modifications on anticancer activity.
Collapse
Affiliation(s)
- Sara Janowska
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Biomedical Sciences, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (R.L.)
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (R.L.)
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
7
|
Sayed MTM, Halim PA, El-Ansary AK, Hassan RA. Design, synthesis, anticancer evaluation, and in silico studies of some thieno[2,3-d]pyrimidine derivatives as EGFR inhibitors. Drug Dev Res 2023; 84:1299-1319. [PMID: 37357422 DOI: 10.1002/ddr.22088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/17/2023] [Accepted: 06/10/2023] [Indexed: 06/27/2023]
Abstract
New series of 20 thieno[2,3-d]pyrimidine derivatives have been synthesized. The National Cancer Institute evaluated all the newly synthesized compounds for their antiproliferative activity against a panel of 60 cancer cell lines. Compound 7b exhibited a remarkable antineoplastic activity at 10 µM dose and was therefore tested at five dose concentrations. The significant and broad-spectrum antineoplastic action of compound 7b was observed against 37 of the tested cancer cell lines with a dose that inhibits 50% of the growth compared to control values in the micromolar range of 1.95-9.6 µM. The dose which inhibits the growth completely in the cytostatic range of 3.99-100 µM was also observed. Compound 7b effectively inhibited epidermal growth factor receptor (EGFR) with 50% inhibition concentration value (IC50 ) = 0.096 ± 0.004 compared to erlotinib with IC50 = 0.037 ± 0.002. Moreover, compound 7b revealed a powerful downregulation effect on total EGFR concentration and its phosphorylation. In addition, compound 7b inhibited phosphatidylinositol 3-kinase, protein kinase B, and the mammalian target of rapamycin pathway phosphorylation. Furthermore, compound 7b raised total apoptosis by 21.93-fold in the ovarian cancer cell line (OVCAR-4) and caused an arrest in the cell cycle in the G1/S phase. It also raised the level of caspase-3 by 4.72-fold. Furthermore, to determine the binding manner of the most effective derivatives and validate their capacity to comply with the pharmacophoric properties necessary for EGFR inhibition, they were docked into the active site of the EGFR.
Collapse
Affiliation(s)
- Menna Tallah M Sayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Peter A Halim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Afaf K El-Ansary
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rasha A Hassan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Badawi WA, Samir M, Fathy HM, Okda TM, Noureldin MH, Atwa GMK, AboulWafa OM. Design, synthesis and molecular docking study of new pyrimidine-based hydrazones with selective anti-proliferative activity against MCF-7 and MDA-MB-231 human breast cancer cell lines. Bioorg Chem 2023; 138:106610. [PMID: 37210828 DOI: 10.1016/j.bioorg.2023.106610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
Efforts were directed on the design, synthesis and evaluation of the anticancer activity of some pyrimidine-based hydrazones against two breast cancer cell lines, MCF-7 and MDA-MB-231. Preliminary screening results revealed that some candidates scrutinized for their antiproliferative activities exhibited IC50 values of 0.87 μM-12.91 μM in MCF-7 and 1.75 μM-9.46 μM in MDA-MB-231 cells, indicating almost equal activities on both cell lines and better growth inhibition activities than those of the positive control 5-fluorouracil (5-FU) which displayed IC50 values of 17.02 μM and 11.73 μM respectively. Selectivity of the significantly active compounds was estimated against MCF-10A normal breast cells when compounds 7c, 8b, 9a and 10b exhibited superior activity for cancerous cells than for normal cells when compound 10b presented the best selectivity Index (SI) with respect to both MCF-7 and MDA-MB-231 cancer cells in comparison to the reference drug 5-FU. Mechanisms of their actions were explored by inspecting activation of caspase-9, annexin V staining and cell cycle analysis. It was noticed that compounds 7c, 8b, 8c 9a-c and 10b produced an increase in caspase-9 levels in MCF-7 treated cells with 10b inducing the highest elevation (27.13 ± 0.54 ng/mL) attaining 8.26-fold when compared to control MCF-7 which was higher than that of staurosporine (19.011 ± 0.40 ng/mL). The same compounds boosted caspase-9 levels in MDA-MB-231 treated cells when an increase in caspase-9 concentration reaching 20.40 ± 0.46 ng/mL (4.11-fold increase) was observed for compound 9a. We also investigated the role of these compounds for their increasing apoptosis ability against the 2 cell lines. Compounds 7c, 8b and 10b tested on MCF-7 cells displayed pre-G1 apoptosis and arrested cell cycle in particular at the S and G1 phases. Further clarification of their effects was made by modulating their related activities as inhibitors of ARO and EGFR enzymes when 8c and 9b showed 52.4% and 58.9% inhibition activity relative to letrozole respectively and 9b and 10b showed 36% and 39% inhibition activity of erlotinib. Also, the inhibition activity was verified by docking into the chosen enzymes.
Collapse
Affiliation(s)
- Waleed A Badawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Damanhour, 22511, Egypt.
| | - Mohamed Samir
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch 71524, Assiut, Egypt
| | - Hazem M Fathy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch 71524, Assiut, Egypt
| | - Tarek M Okda
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| | - Mohamed H Noureldin
- Department of Biochemistry, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria P. O. Box 1029, Egypt
| | - Gamal M K Atwa
- Department of Biochemistry, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt
| | - Omaima M AboulWafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21215, Egypt
| |
Collapse
|
9
|
Takla FN, Bayoumi WA, El-Messery SM, Nasr MNA. Developing multitarget coumarin based anti-breast cancer agents: synthesis and molecular modeling study. Sci Rep 2023; 13:13370. [PMID: 37591917 PMCID: PMC10435442 DOI: 10.1038/s41598-023-40232-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
A new series of 7-substituted coumarin scaffolds containing a methyl ester moiety at the C4-position were synthesized and tested for their in vitro anti-proliferative activity against MCF-7 and MDA-MB-231 breast cancer cell lines using Doxorubicin (DOX) as reference. Compounds 2 and 8 showed noticeable selectivity against MCF-7 with IC50 = 6.0 and 5.8 µM, respectively compared to DOX with IC50 = 5.6 µM. Compounds 10, 12, and 14 exhibited considerable selectivity against Estrogen Negative cells with IC50 = 2.3, 3.5, and 1.9 µM, respectively) compared to DOX with (IC50 = 7.3 µM). The most promising compounds were tested as epidermal growth factor receptor and aromatase (ARO) enzymes inhibitors using erlotinib and exemestane (EXM) as standards, respectively. Results proved that compound 8 elicited the highest inhibitory activity (94.73% of the potency of EXM), while compounds 10 and 12 displayed 97.67% and 81.92% of the potency of Erlotinib, respectively. Further investigation showed that the promising candidates 8, 10, and 12 caused cell cycle arrest at G0-G1 and S phases and induced apoptosis. The mechanistic pathway was confirmed by elevating caspases-9 and Bax/Bcl-2 ratio. A set of in silico methods was also performed including docking, bioavailability ADMET screening and QSAR study.
Collapse
Affiliation(s)
- Fiby N Takla
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, 35712, Egypt
| | - Waleed A Bayoumi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Shahenda M El-Messery
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Magda N A Nasr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
10
|
Halder S, Basu S, Lal S, Ganti AK, Batra SK, Seshacharyulu P. Targeting the EGFR signaling pathway in cancer therapy: What's new in 2023? Expert Opin Ther Targets 2023; 27:305-324. [PMID: 37243489 PMCID: PMC10330690 DOI: 10.1080/14728222.2023.2218613] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
INTRODUCTION Epidermal growth factor receptor (EGFR) is frequently amplified, overexpressed, and mutated in multiple cancers. In normal cell physiology, EGFR signaling controls cellular differentiation, proliferation, growth, and survival. During tumorigenesis, mutations in EGFR lead to increased kinase activity supporting survival, uncontrolled proliferation, and migratory functions of cancer cells. Molecular agents targeting the EGFR pathway have been discovered, and their efficacy has been demonstrated in clinical trials. To date, 14 EGFR-targeted agents have been approved for cancer treatments. AREAS COVERED This review describes the newly identified pathways in EGFR signaling, the evolution of novel EGFR-acquired and innate resistance mechanisms, mutations, and adverse side effects of EGFR signaling inhibitors. Subsequently, the latest EGFR/panEGFR inhibitors in preclinical and clinical studies have been summarized. Finally, the consequences of combining immune checkpoint inhibitors and EGFR inhibitors have also been discussed. EXPERT OPINION As new mutations are threatened against EGFR-tyrosine kinase inhibitors (TKIs), we suggest the development of new compounds targeting specific mutations without inducing new mutations. We discuss potential future research on developing EGFR-TKIs specific for exact allosteric sites to overcome acquired resistance and reduce adverse events. The rising trend of EGFR inhibitors in the pharma market and their economic impact on real-world clinical practice are discussed.
Collapse
Affiliation(s)
- Sushanta Halder
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Soumi Basu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Shobhit Lal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Apar K. Ganti
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Eppley Institute for Research in Cancer and Allied Diseases
- Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Fred & Pamela Buffett Cancer Center University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Eppley Institute for Research in Cancer and Allied Diseases
- Fred & Pamela Buffett Cancer Center University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Fred & Pamela Buffett Cancer Center University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
11
|
AboulWafa OM, Daabees HMG, El-Said AH. Benzoxazole-appended piperidine derivatives as novel anticancer candidates against breast cancer. Bioorg Chem 2023; 134:106437. [PMID: 36842320 DOI: 10.1016/j.bioorg.2023.106437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
Novel series of benzoxazole-appended piperidine derivatives were planned, synthesized and screened against two breast cancer cell lines. Considerable antiproliferative activity was observed for screened compounds (IC50 = 33.32 ± 0.2 µM to 7.31 ± 0.43 µM and 1.66 ± 0.08 µM to 12.10 ± 0.57 µM) against MCF-7 and MDA-MB-231 cell lines respectively being more potent than doxorubicin (IC50 = 8.20 ± 0.39 µM and 13.34 ± 0.63 µM respectively). Active compounds were submitted for enzyme inhibition assays when 4d and 7h demonstrated potent EGFR inhibition (0.08 ± 0.002 µM and 0.09 ± 0.002 µM respectively) compared to erlotinib (0.11 ± 0.003 µM). However, no one compound displayed effective ARO inhibition activity as tested compounds were less active than letrozole. Apoptosis inducing ability results implied that apoptosis was provoked by significant stimulation of caspase-9 protein levels (4.25-7.04-fold) upon treatment of MCF-7 cells with 4a, 7h, 9, 12e and 12f. Alternatively, MDA-MB-231 cells treated with 4d, 7a, 12b and 12c considerably increased caspase-9 levels (2.32-4.06-fold). Cell cycle arrest and annexin-V/Propidium iodide assays further confirmed apoptosis when tested compounds arrested cell cycle at various phases and demonstrated high annexin V binding affinity. Docking outcomes proved valuable binding affinities for compounds 4d and 7h to EGFR enzyme while compounds 4a and 12e, upon docking into the active site of ARO, failed to interact with heme, suggesting their inabilities to act as AIs. Therefore, these benzoxazoles can act as promising candidates exhibiting EGFR inhibition and apoptosis-promoting properties.
Collapse
Affiliation(s)
- Omaima M AboulWafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Hoda M G Daabees
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Damanhour, Damanhour, Egypt
| | - Ahmed H El-Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Mansoura 11152, Dakahliya, Egypt.
| |
Collapse
|
12
|
Hussain Z, Ibrahim MA, El-Gohary NM, Badran AS. Synthesis, Characterization, DFT, QSAR, Antimicrobial, and Antitumor Studies of Some Novel Pyridopyrimidines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Synthesis, antimicrobial activity and molecular docking studies of new fused pyrimidinethiones. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Sobh EA, Khalil NA, Faggal SI, Hassan MSA. New benzothienopyrimidine derivatives as dual EGFR/ARO inhibitors: Design, synthesis, and their cytotoxic effect on MCF-7 breast cancer cell line. Drug Dev Res 2022; 83:1075-1096. [PMID: 35286757 DOI: 10.1002/ddr.21934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/12/2022] [Accepted: 02/24/2022] [Indexed: 11/09/2022]
Abstract
New cytotoxic agents based on benzothienopyrimidine scaffold were designed, synthesized, and evaluated against the MCF-7 breast cancer line in comparison to erlotinib and letrozole as reference drugs. Eight compounds demonstrated up to 20-fold higher anticancer activity than erlotinib, and five of these compounds were up to 11-fold more potent than letrozole in MTT assay. The most promising compounds were evaluated for their inhibitory activity against EGFR and ARO enzymes. Compound 12, which demonstrated potent dual EGFR and ARO inhibitory activity with IC50 of 0.045 and 0.146 µM, respectively, was further evaluated for caspase-9 activation, cell cycle analysis, and apoptosis. The results revealed that the tested compound 12 remarkably induced caspase-9 activation (IC50 = 16.29 ng/ml) caused cell cycle arrest at the pre-G1 /G1 phase and significantly increased the concentration of cells at both early and late stage of apoptosis. In addition, it showed a higher safety profile on normal MCF-10A cells, and higher antiproliferative activity on cancer cells (IC50 = 8.15 µM) in comparison to normal cells (IC50 = 41.20 µM). It also revealed a fivefold higher selectivity index than erlotinib towards MCF-7 cancer cells. Docking studies were performed to rationalize the dual inhibitory activity of compound 12.
Collapse
Affiliation(s)
- Eman A Sobh
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Nadia A Khalil
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Samar I Faggal
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Marwa S A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|