1
|
Zhang Z, Su R, Liu J, Chen K, Wu C, Sun P, Sun T. Tubulin/HDAC dual-target inhibitors: Insights from design strategies, SARs, and therapeutic potential. Eur J Med Chem 2025; 281:117022. [PMID: 39500063 DOI: 10.1016/j.ejmech.2024.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 12/02/2024]
Abstract
Microtubules, one of the cytoskeletons in eukaryotic cells, maintain the proper operation of several cellular functions. Additionally, they are regulated by the acetylation of HDAC6 and SIRT2 which affects microtubule dynamics. Given the fact that tubulin and HDAC inhibitors play a synergistic effect in the treatment of many cancers, the development of tubulin/HDAC dual-target inhibitors is conducive to addressing multiple limitations including drug resistance, dose toxicity, and unpredictable pharmacokinetic properties. At present, tubulin/HDAC dual-target inhibitors have been obtained in three main ways: uncleavable linked pharmacophores, cleavable linked pharmacophores, and modification of single-target drugs. Their therapeutic efficacy has been verified in vivo and in vitro assays. In this article, we reviewed the research progress of tubulin/HDAC dual inhibitors from design strategies, SARs, and biological activities, which may provide help for the discovery of novel tubulin/HDAC dual inhibitors.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China
| | - Rui Su
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China
| | - Junao Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China
| | - Keyu Chen
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China
| | - Chengjun Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China.
| | - Pinghua Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832003, PR China.
| | - Tiemin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China.
| |
Collapse
|
2
|
Liang H, Li S, Peng X, Xiao H. Overview of the epigenetic/cytotoxic dual-target inhibitors for cancer therapy. Eur J Med Chem 2025; 285:117235. [PMID: 39788061 DOI: 10.1016/j.ejmech.2024.117235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Epigenetic dysregulation plays a pivotal role in the initiation and progression of various cancers, influencing critical processes such as tumor growth, invasion, migration, survival, apoptosis, and angiogenesis. Consequently, targeting epigenetic pathways has emerged as a promising strategy for anticancer drug discovery in recent years. However, the clinical efficacy of epigenetic inhibitors, such as HDAC inhibitors, has been limited, often accompanied by resistance. To overcome these challenges, innovative therapeutic approaches are required, including the combination of epigenetic inhibitors with cytotoxic agents or the design of dual-acting inhibitors that target both epigenetic and cytotoxic pathways. In this review, we provide a comprehensive overview of the structures, biological functions and inhibitors of epigenetic regulators (such as HDAC, LSD1, PARP, and BET) and cytotoxic targets (including tubulin and topoisomerase). Furthermore, we discuss recent advancement of combination therapies and dual-target inhibitors that target both epigenetic and cytotoxic pathways, with a particular focus on recent advances, including rational drug design, pharmacodynamics, pharmacokinetics, and clinical applications.
Collapse
Affiliation(s)
- Hailiu Liang
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Shuqing Li
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Xiaopeng Peng
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China; Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, PR China.
| | - Hao Xiao
- School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China; Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, PR China.
| |
Collapse
|
3
|
Hashem H, Hassan A, Abdelmagid WM, Habib AGK, Abdel-Aal MAA, Elshamsy AM, El Zawily A, Radwan IT, Bräse S, Abdel-Samea AS, Rabea SM. Synthesis of New Thiazole-Privileged Chalcones as Tubulin Polymerization Inhibitors with Potential Anticancer Activities. Pharmaceuticals (Basel) 2024; 17:1154. [PMID: 39338317 PMCID: PMC11435058 DOI: 10.3390/ph17091154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
A series of novel thiazole-based chalcones were evaluated for their anticancer activity as potential tubulin polymerization inhibitors. In vitro anticancer screening for the thiazole derivatives 2a-2p exhibited broad-spectrum antitumor activity against various cancer cell lines particularly Ovar-3 and MDA-MB-468 cells with a GI50 range from 1.55 to 2.95 μΜ, respectively. Compound 2e demonstrated significant inhibition of tubulin polymerization, with an IC50 value of 7.78 μM compared to Combretastatin-A4 (CA-4), with an IC50 value of 4.93 μM. Molecular docking studies of compounds 2e, 2g, and 2h into tubulin further supported these findings, revealing that they bind effectively to the colchicine binding site, mirroring key interactions exhibited by CA-4. Computational predictions suggested favorable oral bioavailability and drug-likeness for these compounds, highlighting their potential for further development as chemotherapeutic agents.
Collapse
Affiliation(s)
- Hamada Hashem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Abdelfattah Hassan
- Medicinal Chemistry Department, Faculty of Pharmacy, South Valley University, Qena 52242, Egypt
- Medicinal Chemistry Department, Clinical Pharmacy Program, South Valley National University, Qena 52242, Egypt
| | - Walid M Abdelmagid
- Medicinal Chemistry and Drug Discovery Research Centre, Swenam College, 210-6125 Sussex Avenue, Burnaby, BC V5H 4G1, Canada
| | - Ahmed G K Habib
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed A A Abdel-Aal
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Ali M Elshamsy
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Amr El Zawily
- Department of Plant and Microbiology, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
- Division of Pharmaceutics and Translation Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo 11835, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Ahmed S Abdel-Samea
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Safwat M Rabea
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Apogee Pharmaceuticals Inc., 4475 Wayburne Dr., Suite 105, Burnaby, BC V6V2H8, Canada
| |
Collapse
|
4
|
Lu L, Li K, Pu J, Wang S, Liang T, Wang J. Dual-target inhibitors of colchicine binding site for cancer treatment. Eur J Med Chem 2024; 274:116543. [PMID: 38823265 DOI: 10.1016/j.ejmech.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Colchicine binding site inhibitors (CBSIs) have attracted much attention due to their antitumor efficacies and the advantages of inhibiting angiogenesis and overcoming multidrug resistance. However, no CBSI has been currently approved for cancer treatment due to the insufficient efficacies, serious toxicities and poor pharmacokinetic properties. Design of dual-target inhibitors is becoming a potential strategy for cancer treatment to improve anticancer efficacy, decrease adverse events and overcome drug resistance. Therefore, we reviewed dual-target inhibitors of colchicine binding site (CBS), summarized the design strategies and the biological activities of these dual-target inhibitors, expecting to provide inspiration for developing novel dual inhibitors based on CBS.
Collapse
Affiliation(s)
- Lu Lu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan Province, 475004, China
| | - Keke Li
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan Province, 475004, China
| | - Jiaxin Pu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan Province, 475004, China
| | - Shaochi Wang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Tingting Liang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan Province, 475004, China; The Zhongzhou Laboratory for Integrative Biology, Henan University, Zhengzhou, Henan Province, 450000, China.
| | - Jianhong Wang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan Province, 475004, China.
| |
Collapse
|
5
|
Leite FF, de Sousa NF, de Oliveira BHM, Duarte GD, Ferreira MDL, Scotti MT, Filho JMB, Rodrigues LC, de Moura RO, Mendonça-Junior FJB, Scotti L. Anticancer Activity of Chalcones and Its Derivatives: Review and In Silico Studies. Molecules 2023; 28:molecules28104009. [PMID: 37241750 DOI: 10.3390/molecules28104009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Chalcones are direct precursors in the biosynthesis of flavonoids. They have an α,β-unsaturated carbonyl system which gives them broad biological properties. Among the biological properties exerted by chalcones, their ability to suppress tumors stands out, in addition to their low toxicity. In this perspective, the present work explores the role of natural and synthetic chalcones and their anticancer activity in vitro reported in the last four years from 2019 to 2023. Moreover, we carried out a partial least square (PLS) analysis of the biologic data reported for colon adenocarcinoma lineage HCT-116. Information was obtained from the Web of Science database. Our in silico analysis identified that the presence of polar radicals such as hydroxyl and methoxyl contributed to the anticancer activity of chalcones derivatives. We hope that the data presented in this work will help researchers to develop effective drugs to inhibit colon adenocarcinoma in future works.
Collapse
Affiliation(s)
- Fernando Ferreira Leite
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Natália Ferreira de Sousa
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Bruno Hanrry Melo de Oliveira
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Gabrielly Diniz Duarte
- Post-Graduate Program in Development and Innovation of Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Maria Denise Leite Ferreira
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - José Maria Barbosa Filho
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Luís Cezar Rodrigues
- Post-Graduate Program in Development and Innovation of Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Ricardo Olímpio de Moura
- Post-Graduate Program in Pharmaceuticals Sciences Paraiba State University, Campina Grande 58429-500, Brazil
| | | | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| |
Collapse
|
6
|
Riddhidev B, Endri K, Sabitri L, Kotsull Lauren N, Nishanth K, Dragan I, Mary Kay H P, James S, William T, L M Viranga T. Rational design of metabolically stable HDAC inhibitors: An overhaul of trifluoromethyl ketones. Eur J Med Chem 2022; 244:114807. [PMID: 36244186 PMCID: PMC10257519 DOI: 10.1016/j.ejmech.2022.114807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022]
Abstract
Epigenetic regulation of gene expression using histone deacetylase (HDAC) inhibitors is a promising strategy for developing new anticancer agents. The most common HDAC inhibitors are hydroxamates, which, though highly potent, have limitations due to their poor pharmacokinetic properties and lack of isoform selectivity. Trifluoromethylketones (TFMK) developed as alternatives to hydroxamates are rapidly metabolized to inactive trifluoromethyl alcohols in vivo, which prevented their further development as potential drug candidates. In order to overcome this limitation, we designed trifluoropyruvamides (TFPAs) as TFMK surrogates. The presence of an additional electron withdrawing group next to the ketone carbonyl group made the hydrate form of the ketone more stable, thus preventing its metabolic reduction to alcohol in vivo. In addition, this structural modification reduces the potential of the TFMK group to act as a covalent warhead to eliminate off-target effects. Additional structural changes in the cap group of the inhibitors gave analogues with IC50 values ranging from upper nanomolar to low micromolar in the cytotoxicity assay, and they were more selective for cancer cells over normal cells. Some of the most active analogues inhibited HDAC enzymes with low nanomolar IC50 values and were found to be more selective for HDAC8 over other isoforms. These molecules provide a new class of HDAC inhibitors with a metabolically stable metal-binding group that could be used to develop selective HDAC inhibitors by further structural modification.
Collapse
Affiliation(s)
- Banerjee Riddhidev
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - Karaj Endri
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - Lamichhane Sabitri
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, 43606, USA
| | - N Kotsull Lauren
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Kuganesan Nishanth
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, 43606, USA
| | - Isailovic Dragan
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, 43606, USA
| | - Pflum Mary Kay H
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Slama James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - Taylor William
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, 43606, USA.
| | - Tillekeratne L M Viranga
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43606, USA.
| |
Collapse
|
7
|
Karaj E, Sindi SH, Kuganesan N, Koranne RA, Knoff JR, James AW, Fu Y, Kotsull LN, Pflum MK, Shah Z, Taylor WR, Tillekeratne LMV. First-in-Class Dual Mechanism Ferroptosis-HDAC Inhibitor Hybrids. J Med Chem 2022; 65:14764-14791. [PMID: 36306372 PMCID: PMC10257520 DOI: 10.1021/acs.jmedchem.2c01276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HDAC inhibitors are an attractive class of cytotoxic agents for the design of hybrid molecules. Several HDAC hybrids have emerged over the years, but none combines HDAC inhibition with ferroptosis, a combination which is being extensively studied because it leads to enhanced cytotoxicity and attenuated neuronal toxicity. We combined the pharmacophores of SAHA and CETZOLE molecules to design the first-in-class dual mechanism hybrid molecules, which induce ferroptosis and inhibit HDAC proteins. The involvement of both mechanisms in cytotoxicity was confirmed by a series of biological assays. The cytotoxic effects were evaluated in a series of cancer and neuronal cell lines. Analogue HY-1 demonstrated the best cytotoxic profile with GI50 values as low as 20 nM. Although the increase in activity of the hybrids over the combinations is modest in cellular systems, they have the potential advantage of homogeneous spatiotemporal distribution in in vivo systems.
Collapse
Affiliation(s)
- Endri Karaj
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Shaimaa H Sindi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Nishanth Kuganesan
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio 43606, United States
| | - Radhika A Koranne
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio 43606, United States
| | - Joseph R Knoff
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Antonisamy William James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Yu Fu
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - Lauren N Kotsull
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Mary Kay Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Zahoor Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| | - William R Taylor
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio 43606, United States
| | - L M Viranga Tillekeratne
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
8
|
An Overview of the Biological Evaluation of Selected Nitrogen-Containing Heterocycle Medicinal Chemistry Compounds. Int J Mol Sci 2022; 23:ijms23158117. [PMID: 35897691 PMCID: PMC9368212 DOI: 10.3390/ijms23158117] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
Heterocyclic compounds are a class of compounds of natural origin with favorable properties and hence have major pharmaceutical significance. They have an exceptional adroitness favoring their use as diverse smart biomimetics, in addition to possessing an active pharmacophore in a complex structure. This has made them an indispensable motif in the drug discovery field. Heterocyclic compounds are usually classified according to the ring size, type, and the number of heteroatoms present in the ring. Among different heterocyclic ring systems, nitrogen heterocyclic compounds are more abundant in nature. They also have considerable pharmacological significance. This review highlights recent pioneering studies in the biological assessment of nitrogen-containing compounds, namely: triazoles, tetrazoles, imidazole/benzimidazoles, pyrimidines, and quinolines. It explores publications between April 2020 and February 2022 and will benefit researchers in medicinal chemistry and pharmacology. The present work is organized based on the size of the heterocyclic ring.
Collapse
|
9
|
Karaj E, Dlamini S, Koranne R, Sindi SH, Perera L, Taylor WR, Viranga Tillekeratne L. Pharmacophore optimization of imidazole chalcones to modulate microtubule dynamics. Bioorg Chem 2022; 122:105700. [DOI: 10.1016/j.bioorg.2022.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 11/25/2022]
|