1
|
Abdul Manan MAF, Cordes DB, McKay AP. Methyl 2-[( Z)-5-bromo-2-oxoindolin-3-yl-idene]-hydrazinecarbodi-thio-ate. IUCRDATA 2024; 9:x240787. [PMID: 39247078 PMCID: PMC11375598 DOI: 10.1107/s2414314624007879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
The title compound, C10H8BrN3OS2, a brominated di-thio-carbazate imine deriv-ative, was obtained from the condensation reaction of S-methyl-dithio-carbazate (SMDTC) and 5-bromo-isatin. The essentially planar mol-ecule exhibits a Z configuration, with the di-thio-carbazate and 5-bromo-isatin fragments located on the same sides of the C=N azomethine bond, which allows for the formation of an intra-molecular N-H⋯Ob (b = bromo-isatin) hydrogen bond generating an S(6) ring motif. In the crystal, adjacent mol-ecules are linked by pairs of N-H⋯O hydrogen bonds, forming dimers characterized by an R 2 2(8) loop motif. In the extended structure, mol-ecules are linked into a three-dimensional network by C-H⋯S and C-H⋯Br hydrogen bonds, C-Br⋯S halogen bonds and aromatic π-π stacking.
Collapse
Affiliation(s)
| | - David B Cordes
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| | - Aidan P McKay
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| |
Collapse
|
2
|
Kumar D, Aggarwal N, Kumar V, Chopra H, Marwaha RK, Sharma R. Emerging synthetic strategies and pharmacological insights of 1,3,4-thiadiazole derivatives: a comprehensive review. Future Med Chem 2024; 16:563-581. [PMID: 38353003 DOI: 10.4155/fmc-2023-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024] Open
Abstract
This review meticulously examines the synthesis techniques for 1,3,4-thiadiazole derivatives, focusing on cyclization, condensation reactions and functional group transformations. It enhances the understanding of these chemical methods that re crucial for tailoring derivative properties and functionalities. This study is considered to be vital for researchers, detailing established effects such as antioxidant, antimicrobial and anticancer activities, and revealing emerging pharmacological potentials such as neuroprotective, antiviral and antidiabetic properties. It also discusses the molecular mechanisms underlying these effects. In addition, this article covers structure-activity relationship studies and computational modelling that are essential for designing potent, selective 1,3,4-thiadiazole compounds. This work lays a foundation for future research and targeted therapeutic development.
Collapse
Affiliation(s)
- Davinder Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (deemed to be a university), Mullana, 133207, India
| | - Virender Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of engineering, Saveetha Institute of Medical & Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Rakesh Kumar Marwaha
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
3
|
Kanwal A, Afzal U, Zubair M, Imran M, Rasool N. Synthesis of anti-depressant molecules via metal-catalyzed reactions: a review. RSC Adv 2024; 14:6948-6971. [PMID: 38410364 PMCID: PMC10895647 DOI: 10.1039/d3ra06391g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
Depression is one of the most mutilating conditions in the world today. It has been difficult to make advancements toward better, more effective therapies since the introduction of antidepressant medicines in the late 1950s. One important field of medicinal chemistry is the synthesis of antidepressant molecules through metal-catalyzed procedures. The important role that different transition metals, including iron, nickel, ruthenium, and others, serve as catalysts in the synthesis of antidepressants is examined in this review. Key structural motifs included in antidepressant drugs such as tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and others can be synthesized in a variety of effective ways using metal-catalyzed steps. This review examines current developments in the catalytic synthesis of antidepressants and their potential application over the previous thirteen years.
Collapse
Affiliation(s)
- Aqsa Kanwal
- Department of Chemistry, Government College University Faisalabad 38000 Pakistan +92-3085448384
| | - Uzma Afzal
- Department of Chemistry, Government College University Faisalabad 38000 Pakistan +92-3085448384
| | - Muhammad Zubair
- Department of Chemistry, Government College University Faisalabad 38000 Pakistan +92-3085448384
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad 38000 Pakistan +92-3085448384
| |
Collapse
|
4
|
Ibrahim MA, Al-Harbi SA, Allehyani ES, Alqurashi EA, Alshareef FM. First Synthesis of the Novel Triazolo[3,4- b][1,3,4]Thiadiazoles and Triazolo[3,4- b][1,3,4]Thiadiazines Linked Chromeno[2,3- b]Pyridine. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2173621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Magdy A. Ibrahim
- Department of Chemistry, Faculty of Education, Ain Shams University, Heliopolis, Egypt
| | - Sami A. Al-Harbi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Esam S. Allehyani
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - F. M. Alshareef
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Kumar D, Kumar H, Kumar V, Deep A, Sharma A, Marwaha MG, Marwaha RK. Mechanism-based approaches of 1,3,4 thiadiazole scaffolds as potent enzyme inhibitors for cytotoxicity and antiviral activity. MEDICINE IN DRUG DISCOVERY 2023. [DOI: 10.1016/j.medidd.2022.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
6
|
Taha M, Imran S, Rahim F, Uddin N, Iqbal N, Khan KM, Farooq RK, Alomari M, Islam I, Algheribe S. Discovering biological efficacy of new thiadiazole as effective inhibitors of urease, glycation, and (DPPH) scavengers: Biochemical and in silico study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Kolcuoglu Y, Bekircan O, Fazli H, Sahin E, Ture A, Akdemir A, Hamarat Sanlier S. Design and synthesis of new heterocyclic compounds containing 5-[(1 H-1,2,4-triazol-1-yl)methyl]-3 H-1,2,4-triazole-3-thione structure as potent hEGFR inhibitors. J Biomol Struct Dyn 2023; 41:12753-12767. [PMID: 36688370 DOI: 10.1080/07391102.2023.2167113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023]
Abstract
EGFR is one of the important mediators of the signaling cascade that determines key roles in various biological processes such as growth, differentiation, metabolism and apoptosis in the cell in response to external and internal stimuli. In recent years, it has been proven that although this enzyme activity is tightly regulated in normal cells, if the enzyme activity cannot be controlled, it can lead to malignancy. EGFR is also considered a prominent macromolecule in targeted cancer chemotherapy. For this purpose, a comprehensive modeling studies were conducted against EGFR protein and novel molecules containing 5-[(1H-1,2,4-triazol-1-yl)methyl]-3H-1,2,4-triazole-3-thione structure were suggested to be synthesized. Among the synthesized molecules, compounds 7c, 8c, 8f and 8g were determined to have significant IC50 values. Compound 8g was found to have the IC50 value closest to the very well-known EGFR inhibitor Gefitinib with its noncompetitive inhibition form. Ki value of compound 8g was calculated as 0.00232 µM.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yakup Kolcuoglu
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Olcay Bekircan
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Hilal Fazli
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Emine Sahin
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Aslı Ture
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Atilla Akdemir
- Computer-Aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Senay Hamarat Sanlier
- Biochemistry Department, Faculty of Science, Ege University, Izmir, Turkey
- Center for Drug Research, Development and Pharmacokinetic Applications (ARGEFAR), Ege University, Izmir, Turkey
| |
Collapse
|