1
|
Abdelall EKA, Elshemy HAH, Labib MB, Mohamed FEA. Design, synthesis of novel chromene-based scaffolds targeting hepatocellular carcinoma: Cell cycle arrest, cytotoxic effect against resistant cancer cells, apoptosis induction, and c-Src inhibition. Drug Dev Res 2024; 85:e22133. [PMID: 37971069 DOI: 10.1002/ddr.22133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
New chromene derivatives were synthesized based on 4-(3,4-dimethoxy)-4H-chromene scaffold. All target compounds exhibited cytotoxic activity against HepG2 cells (IC50 = 2.40-141.22 μM). Chromens 5 and 9 showed superior cytotoxicity over staurosporine (IC50 = 18.27 μM) and vinblastine (IC50 = 5.20 μM). c-Src kinase inhibition assay of compounds 5 and 9 displayed the dominant c-Src inhibitory activity of 5 (IC50 = 0.184 μM) over 9 (IC50 = 0.288 μM). The safety of the most potent compound 5 against normal WI-38 cells was confirmed via its IC50 of 115.75 μM comparable with 5-FU (IC50 = 16.28 μM). Moreover, the promising chromene 5 displayed potent cytotoxicity against resistant HepG2 cells with IC50 of 26.03 μM comparable with 5-FU (IC50 = 42.68 μM). The most active chromene 5 arrested the HepG2 cell cycle at the S phase and induced a 29-fold increase in the total number of apoptotic cells indicating pre-G1 apoptosis. The ability of compound 5 to induce apoptosis was supported via elevation of caspase-3, caspase-7, caspase-9 and proapoptotic Bax protein levels in addition to downregulation of the antiapoptotic Bcl2 protein. Molecular docking studies of compound 5 showed good binding interaction pattern inside c-Src kinase enzyme active site.
Collapse
Affiliation(s)
- Eman K A Abdelall
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Heba A H Elshemy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Madlen B Labib
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma E A Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Podolak M, Holota S, Deyak Y, Dziduch K, Dudchak R, Wujec M, Bielawski K, Lesyk R, Bielawska A. Tubulin inhibitors. Selected scaffolds and main trends in the design of novel anticancer and antiparasitic agents. Bioorg Chem 2024; 143:107076. [PMID: 38163424 DOI: 10.1016/j.bioorg.2023.107076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Design of tubulin inhibitors as anticancer drugs dynamically developed over the past 20 years. The modern arsenal of potential tubulin-targeting anticancer agents is represented by small molecules, monoclonal antibodies, and antibody-drug conjugates. Moreover, targeting tubulin has been a successful strategy in the development of antiparasitic drugs. In the present review, an overall picture of the research and development of potential tubulin-targeting agents using small molecules between 2018 and 2023 is provided. The data about some most often used and prospective chemotypes of small molecules (privileged heterocycles, moieties of natural molecules) and synthetic methodologies (analogue-based, fragment-based drug design, molecular hybridization) applied for the design of novel agents with an impact on the tubulin system are summarized. The design and prospects of multi-target agents with an impact on the tubulin system were also highlighted. Reported in the review data contribute to the "structure-activity" profile of tubulin-targeting small molecules as anticancer and antiparasitic agents and will be useful for the application by medicinal chemists in further exploration, design, improvement, and optimization of this class of molecules.
Collapse
Affiliation(s)
- Magdalena Podolak
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Yaroslava Deyak
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; Department of Pharmaceutical Disciplines, Uzhhorod National University, Narodna Square 3, 88000 Uzhhorod, Ukraine
| | - Katarzyna Dziduch
- Doctoral School, Medical University of Lublin, Chodzki 7, 20-093 Lublin, Poland
| | - Rostyslav Dudchak
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Monika Wujec
- Department of Organic Chemistry, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| |
Collapse
|
3
|
Alblewi FF, Alsehli MH, Hritani ZM, Eskandrani A, Alsaedi WH, Alawad MO, Elhenawy AA, Ahmed HY, El-Gaby MSA, Afifi TH, Okasha RM. Synthesis and Characterization of a New Class of Chromene-Azo Sulfonamide Hybrids as Promising Anticancer Candidates with the Exploration of Their EGFR, hCAII, and MMP-2 Inhibitors Based on Molecular Docking Assays. Int J Mol Sci 2023; 24:16716. [PMID: 38069037 PMCID: PMC10706804 DOI: 10.3390/ijms242316716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
In this study, novel selective antitumor compounds were synthesized based on their fundamental pharmacophoric prerequisites associated with EGFR inhibitors. A molecular hybridization approach was employed to design and prepare a range of 4H-chromene-3-carboxylates 7a-g, 8, and 11a-e derivatives, each incorporating a sulfonamide moiety. The structures of these hybrid molecules were verified using comprehensive analytical and spectroscopic techniques. During the assessment of the newly synthesized compounds for their anticancer properties against three tumor cell lines (HepG-2, MCF-7, and HCT-116), compounds 7f and 7g displayed remarkable antitumor activity against all tested cell lines, outperforming the reference drug Cisplatin in terms of efficacy. Consequently, these promising candidates were selected for further investigation of their anti-EGFR, hCAII, and MMP-2 potential, which exhibited remarkable effectiveness against EGFR and MMP2 when compared to Sorafenib. Additionally, docking investigations regarding the EGFR binding site were implemented for the targeted derivatives in order to attain better comprehension with respect to the pattern in which binding mechanics occur between the investigated molecules and the active site, which illustrated a higher binding efficacy in comparison with Sorafenib.
Collapse
Affiliation(s)
- Fawzia F. Alblewi
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Mosa H. Alsehli
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Zainab M. Hritani
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Areej Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Wael H. Alsaedi
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Majed O. Alawad
- Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia;
| | - Ahmed A. Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt; (A.A.E.); (M.S.A.E.-G.)
- Chemistry Department, Faculty of Science and Art, AlBaha University, Al Bahah 65731, Saudi Arabia
| | - Hanaa Y. Ahmed
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Nasr City 11884, Egypt;
| | - Mohamed S. A. El-Gaby
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt; (A.A.E.); (M.S.A.E.-G.)
| | - Tarek H. Afifi
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| | - Rawda M. Okasha
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia; (F.F.A.); (Z.M.H.); (A.E.); (W.H.A.)
| |
Collapse
|
4
|
Teli G, Pal R, Maji L, Sengupta S, Raghavendra NM, Matada GSP. Medicinal Chemistry Perspectives on Recent Advances in Src Kinase Inhibitors as a Potential Target for the Development of Anticancer Agents: Biological Profile, Selectivity, Structure-Activity Relationship. Chem Biodivers 2023; 20:e202300515. [PMID: 37563848 DOI: 10.1002/cbdv.202300515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023]
Abstract
The physiological Src proto-oncogene is a protein tyrosine kinase receptor that served as the essential signaling pathway in different types of cancer. Src kinase receptor is divided into different domains: a unique domain, an SH3 domain, an SH2 domain, a protein tyrosine kinase domain, and a regulatory tail, which runs from the N-terminus to the C-terminus. Src kinase inhibitors bind in the kinase domain and are activated by phosphorylation. The etiology of cancer involved various signaling pathways and Src signaling pathways are also involved in those clusters. Although the dysregulation of Src kinase resulted in cancer being discovered in the late 19th century it is still considered a cult pathway because it is not much explored by different medicinal chemists and oncologists. The Src kinase regulated through different kinase pathways (MAPK, PI3K/Akt/mTOR, JAK/STAT3, Hippo kinase, PEAK1, and Rho/ROCK pathways) and proceeded downstream signaling to conduct cell proliferation, angiogenesis, migration, invasion, and metastasis of cancer cells. There are numerous FDA-approved drugs flooded the market but still, there is a huge demand for the creation of novel anticancer drugs. As the existing drugs are accompanied by several adverse effects and drug resistance due to rapid mutation in proteins. In this review, we have elaborated about the structure and activation of Src kinase, as well as the development of Src kinase inhibitors. Our group also provided a comprehensive overview of Src inhibitors throughout the last two decades, including their biological activity, structure-activity relationship, and Src kinase selectivity. The Src binding pocket has been investigated in detail to better comprehend the interaction of Src inhibitors with amino acid residues. We have strengthened the literature with our contribution in terms of molecular docking and ADMET studies of top compounds. We hope that the current analysis will be a useful resource for researchers and provide glimpse of direction toward the design and development of more specific, selective, and potent Src kinase inhibitors.
Collapse
Affiliation(s)
- Ghanshyam Teli
- Integrated Drug Discovery Center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Lalmohan Maji
- Integrated Drug Discovery Center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Sindhuja Sengupta
- Integrated Drug Discovery Center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | | |
Collapse
|
5
|
Zhu S, Zhang D. Editorial: Regulation and dysfunction of CSK and CHK. Front Cell Dev Biol 2023; 11:1254961. [PMID: 37538399 PMCID: PMC10396774 DOI: 10.3389/fcell.2023.1254961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023] Open
Affiliation(s)
- Shudong Zhu
- School of Medicine, Nantong University, Nantong, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| |
Collapse
|
6
|
Zamisa SJ, Adeleke AA, Devnarain N, Rhman MA, Owira PMO, Omondi B. The link between relative stability constant of DNA- and BSA-chromenopyrimidine complexes and cytotoxicity towards human breast cancer cells (MCF-7). RSC Adv 2023; 13:21820-21837. [PMID: 37475760 PMCID: PMC10354499 DOI: 10.1039/d3ra01741a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
In this study, we synthesized and characterized ten chromenopyrimidine derivatives using analytical and spectroscopic methods. Studies on DNA and albumin binding affinity, as well as cytotoxicity tests on human breast cancer (MCF-7) cells, of the chromenopyrimidines, were conducted. The natural logarithm of the relative stability constant of DNA- and BSA-chromenopyrimidine complexes [ln(KDNA/KBSA)] was used as a criterion for selecting compounds for cytotoxicity studies. We found that ln(KDNA/KBSA) was inversely related to IC50 values of the compounds in MCF-7 cells. The antiproliferative effects of the compounds were found to induce apoptosis in MCF-7 cells, which is a desired mechanism of cell death. Correlations between the DNA and albumin binding affinities of chromenopyrimidines were established. We propose that this relationship approach can, for a given set of compounds, assist in predicting the cytotoxicity of potential drug candidates towards MCF-7 cells based on their experimentally determined CT-DNA and BSA binding affinities.
Collapse
Affiliation(s)
- Sizwe J Zamisa
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Adesola A Adeleke
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Nikita Devnarain
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Science, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Mahasin Abdel Rhman
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Science, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Peter M O Owira
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Science, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Bernard Omondi
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
7
|
Halim PA, Sharkawi SMZ, Labib MB. Novel pyrazole-based COX-2 inhibitors as potential anticancer agents: Design, synthesis, cytotoxic effect against resistant cancer cells, cell cycle arrest, apoptosis induction and dual EGFR/Topo-1 inhibition. Bioorg Chem 2023; 131:106273. [PMID: 36444790 DOI: 10.1016/j.bioorg.2022.106273] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Novel differently substituted pyrazole derivatives were designed, synthesized and evaluated for their anticancer activity. All compounds selectively inhibited COX-2 enzyme (IC50 = 0.043-0.56 μM). Compounds 11, 12 and 15 showed superior potency (IC50 = 0.043-0.049 μM) and screened for their antiproliferative effect against MCF-7 and HT-29 cancer cell lines using doxorubicin and 5-FU as reference drugs. Compounds 11, 12 and 15 showed good potency against MCF-7 (IC50 = 2.85-23.99 μM) and HT-29 (IC50 = 2.12-69.37 μM) cell lines. Also, compounds 11, 12 and 15 displayed (IC50 = 56.61-115.75 μM) against non-cancerous WI-38 cells compared to doxorubicin (IC50 = 13.32 μM). Compound 11 showed superior cytotoxicity against both MCF-7 (IC50 = 2.85) and HT-29 (IC50 = 2.12 μM) and was more potent than 5-FU (HT-29: IC50 = 8.77 μM). Besides, it displayed IC50 of 115.75 μM against normal WI-38 cells regarding it as a safe cytotoxic agent. In addition, compound 11 displayed IC50 values of 63.44 μM and 98.60 μM against resistant HT-29 and resistant MCF-7 cancer cell lines sequentially. The most potent compound arrested cell cycle at G1/S phase in HT-29 treated cells displaying accumulation of cells in G0 phase and increase in percentage of cells in both early and late apoptotic stages. Apoptotic induction ability was confirmed via up-regulation of BAX, down-regulation of Bcl-2 and activation of caspase-3/9 protein levels. Compound 11 inhibited both EGFR (IC50 = 0.083 μM) and Topo-1 (IC50 = 0.020 μM) enzymes. Also, compound 11 decreased both total and phosphorylated EGFR concentration in HT-29 cells. Finally, molecular docking study showed good binding interactions between novel compounds and target receptors.
Collapse
Affiliation(s)
- Peter A Halim
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Souty M Z Sharkawi
- Department of Pharmacology & Toxicolgy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Madlen B Labib
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
8
|
Zhang W, Yang L, Si W, Tang M, Bai P, Zhu Z, Kuang S, Liu J, Shi M, Huang J, Chen X, Li D, Wen Y, Yang Z, Xiao K, Chen L. SKLB-14b, a novel oral microtubule-destabilizing agent based on hydroxamic acid with potent anti-tumor and anti-multidrug resistance activities. Bioorg Chem 2022; 128:106053. [DOI: 10.1016/j.bioorg.2022.106053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 01/05/2023]
|