1
|
Kayrouz CM, Seyedsayamdost MR. Enzymatic strategies for selenium incorporation into biological molecules. Curr Opin Chem Biol 2024; 81:102495. [PMID: 38954947 DOI: 10.1016/j.cbpa.2024.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
The trace element selenium (Se) is essential to the physiology of most organisms on the planet. The most well documented of Se's biological forms are selenoproteins, where selenocysteine often serves as the catalytic center for crucial redox processes. Se is also found in several other classes of biological molecules, including nucleic acids, sugars, and modified amino acids, although its role in the function of these metabolites is less understood. Despite its prevalence, only a small number of Se-specific biosynthetic pathways have been discovered. Around half of these were first characterized in the past three years, suggesting that the selenometabolome may be more diverse than previously appreciated. Here, we review the recent advances in our understanding of this intriguing biochemical space, and discuss prospects for future discovery efforts.
Collapse
Affiliation(s)
- Chase M Kayrouz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
2
|
Huang W, Song J, Sun T, He Y, Li X, Deng Z, Long F. Substrate binding and catalytic mechanism of the Se-glycosyltransferase SenB in the biosynthesis of selenoneine. Nat Commun 2024; 15:1659. [PMID: 38395953 PMCID: PMC10891094 DOI: 10.1038/s41467-024-46065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Selenium is an essential multifunctional trace element in diverse organisms. The only Se-glycosyltransferase identified that catalyzes the incorporation of selenium in selenoneine biosynthesis is SenB from Variovorax paradoxus. Although the biochemical function of SenB has been investigated, its substrate specificity, structure, and catalytic mechanism have not been elucidated. Here, we reveal that SenB exhibits sugar donor promiscuity and can utilize six UDP-sugars to generate selenosugars. We report crystal structures of SenB complexed with different UDP-sugars. The key elements N20/T23/E231 contribute to the sugar donor selectivity of SenB. A proposed catalytic mechanism is tested by structure-guided mutagenesis, revealing that SenB yields selenosugars by forming C-Se glycosidic bonds via spontaneous deprotonation and disrupting Se-P bonds by nucleophilic water attack, which is initiated by the critical residue K158. Furthermore, we functionally and structurally characterize two other Se-glycosyltransferases, CbSenB from Comamonadaceae bacterium and RsSenB from Ramlibacter sp., which also exhibit sugar donor promiscuity.
Collapse
Affiliation(s)
- Wei Huang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jun Song
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Tianxue Sun
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yue He
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Feng Long
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
3
|
Gan Y, Chen X, Li Y, Guo Y, Wang R. Sequential Azidation/Azolation of Prenylated Derivatives and a Click Reaction Enable Selective Labeling and Degradation of RAS Protein. J Org Chem 2023; 88:10836-10843. [PMID: 37462271 DOI: 10.1021/acs.joc.3c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We propose the introduction of the azido and azo-functionalities into prenylated derivatives under mild conditions in a selective and efficient way. Upon protocol establishment and substrate scope determination, we apply this method to prenylated protein (citronellol-BSA) labeling, chemical pulldown, and enrichment. Eventually, we achieve the degradation of RAS on MCF-7 and HeLa cell lines by employing the well-designed probe von Hippel-Lindau derivatives C4 through the sequential azidation/azolation and click-reaction (SACR) pathway targeting the prenyl functionality attached to the Caax motif of the tested RAS protein. This method displays great potential in regulation of prenylated molecules.
Collapse
Affiliation(s)
- Youfang Gan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaoqian Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuanyuan Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuyang Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Rui Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518063, China
| |
Collapse
|
4
|
Kulik K, Sadowska K, Wielgus E, Pacholczyk-Sienicka B, Sochacka E, Nawrot B. 2-Selenouridine, a Modified Nucleoside of Bacterial tRNAs, Its Reactivity in the Presence of Oxidizing and Reducing Reagents. Int J Mol Sci 2022; 23:ijms23147973. [PMID: 35887319 PMCID: PMC9325004 DOI: 10.3390/ijms23147973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
The 5-substituted 2-selenouridines are natural components of the bacterial tRNA epitranscriptome. Because selenium-containing biomolecules are redox-active entities, the oxidation susceptibility of 2-selenouridine (Se2U) was studied in the presence of hydrogen peroxide under various conditions and compared with previously reported data for 2-thiouridine (S2U). It was found that Se2U is more susceptible to oxidation and converted in the first step to the corresponding diselenide (Se2U)2, an unstable intermediate that decomposes to uridine and selenium. The reversibility of the oxidized state of Se2U was demonstrated by the efficient reduction of (Se2U)2 to Se2U in the presence of common reducing agents. Thus, the 2-selenouridine component of tRNA may have antioxidant potential in cells because of its ability to react with both cellular ROS components and reducing agents. Interestingly, in the course of the reactions studied, we found that (Se2U)2 reacts with Se2U to form new ‘oligomeric nucleosides′ as linear and cyclic byproducts.
Collapse
Affiliation(s)
- Katarzyna Kulik
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (E.W.); (B.N.)
- Correspondence: ; Tel.: +48-(42)-68-03-215
| | - Klaudia Sadowska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.S.); (B.P.-S.); (E.S.)
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (E.W.); (B.N.)
| | - Barbara Pacholczyk-Sienicka
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.S.); (B.P.-S.); (E.S.)
| | - Elzbieta Sochacka
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.S.); (B.P.-S.); (E.S.)
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (E.W.); (B.N.)
| |
Collapse
|
5
|
Szczupak P, Sierant M, Wielgus E, Radzikowska-Cieciura E, Kulik K, Krakowiak A, Kuwerska P, Leszczynska G, Nawrot B. Escherichia coli tRNA 2-Selenouridine Synthase (SelU): Elucidation of Substrate Specificity to Understand the Role of S-Geranyl-tRNA in the Conversion of 2-Thio- into 2-Selenouridines in Bacterial tRNA. Cells 2022; 11:cells11091522. [PMID: 35563829 PMCID: PMC9105526 DOI: 10.3390/cells11091522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
The bacterial enzyme tRNA 2-selenouridine synthase (SelU) is responsible for the conversion of 5-substituted 2-thiouridine (R5S2U), present in the anticodon of some bacterial tRNAs, into 5-substituted 2-selenouridine (R5Se2U). We have already demonstrated using synthetic RNAs that transformation S2U→Se2U is a two-step process, in which the S2U-RNA is geranylated and the resulting geS2U-RNA is selenated. Currently, the question is how SelU recognizes its substrates and what the cellular pathway of R5S2U→R5Se2U conversion is in natural tRNA. In the study presented here, we characterized the SelU substrate requirements, identified SelU-associated tRNAs and their specific modifications in the wobble position. Finally, we explained the sequence of steps in the selenation of tRNA. The S2U position within the RNA chain, the flanking sequence of the modification, and the length of the RNA substrate, all have a key influence on the recognition by SelU. MST data on the affinity of SelU to individual RNAs confirmed the presumed process. SelU binds the R5S2U-tRNA and then catalyzes its geranylation to the R5geS2U-tRNA, which remains bound to the enzyme and is selenated in the next step of the transformation. Finally, the R5Se2U-tRNA leaves the enzyme and participates in the translation process. The enzyme does not directly catalyze the R5S2U-tRNA selenation and the R5geS2U-tRNA is the intermediate product in the linear sequence of reactions.
Collapse
Affiliation(s)
- Patrycja Szczupak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (P.S.); (E.W.); (E.R.-C.); (K.K.); (A.K.); (B.N.)
| | - Malgorzata Sierant
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (P.S.); (E.W.); (E.R.-C.); (K.K.); (A.K.); (B.N.)
- Correspondence: ; Tel.: +48-(42)-680-32-72
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (P.S.); (E.W.); (E.R.-C.); (K.K.); (A.K.); (B.N.)
| | - Ewa Radzikowska-Cieciura
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (P.S.); (E.W.); (E.R.-C.); (K.K.); (A.K.); (B.N.)
| | - Katarzyna Kulik
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (P.S.); (E.W.); (E.R.-C.); (K.K.); (A.K.); (B.N.)
| | - Agnieszka Krakowiak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (P.S.); (E.W.); (E.R.-C.); (K.K.); (A.K.); (B.N.)
| | - Paulina Kuwerska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.K.); (G.L.)
| | - Grazyna Leszczynska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.K.); (G.L.)
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (P.S.); (E.W.); (E.R.-C.); (K.K.); (A.K.); (B.N.)
| |
Collapse
|