1
|
Cai X, Cai J, Fang L, Xu S, Zhu H, Wu S, Chen Y, Fang S. Design, synthesis and molecular modeling of novel D-ring substituted steroidal 4,5-dihydropyrazole thiazolinone derivatives as anti-inflammatory agents by inhibition of COX-2/iNOS production and down-regulation of NF-κB/MAPKs in LPS-induced RAW264.7 macrophage cells. Eur J Med Chem 2024; 272:116460. [PMID: 38704943 DOI: 10.1016/j.ejmech.2024.116460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
It has been reported that 4,5-dihydropyrazole and thiazole derivatives have many biological functions, especially in the aspect of anti-inflammation. According to the strategy of pharmacophore combination, we introduced thiazolinone and dihydropyrazole moiety into steroid skeleton to design and synthesize a novel series of D-ring substituted steroidal 4,5-dihydropyrazole thiazolinone derivatives, and assessed their in vitro anti-inflammatory profiles against Lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. The anti-inflammatory activities assay demonstrated that compound 12e was considered as the most effective anti-inflammatory drug, which suppressed the expression of pro-inflammatory mediators including nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), it also dose-dependently inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-induced RAW 264.7 macrophage cells. Furthermore, the results of the Western blot analysis showed a correlation between the inhibition of the Nuclear factor-kappa B (NF-κB) and Mitogen-activated protein kinases (MAPKs) signaling pathways and the suppressive effects of compound 12e on pro-inflammatory cytokines. Molecular docking studies of compound 12e into the COX-2 protein receptor (PDB ID: 5IKQ) active site was performed to rationalize their COX-2 inhibitory potency. The results were found to be in line with the biological findings as they exerted more favorable interactions compared to that of dexamethasone (DXM), explaining their remarkable COX-2 inhibitory activity. The findings revealed that these candidates could be identified as potent anti-inflammatory agents, compound 12e could be a promising drug for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xiaorui Cai
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jianfeng Cai
- Department of Interventional Therapy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ling Fang
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Siqi Xu
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Huide Zhu
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shuteng Wu
- Department of Pharmacy, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Yicun Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Shuopo Fang
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
2
|
Yu Y, Wang Y, Ding L, Wang GC, Geng H, Tan CY, Wang Y, Liu JS, Wang GK. Discovery of ent-labdane derivatives from Andrographis paniculata and their anti-inflammatory activity. PHYTOCHEMISTRY 2024; 219:113986. [PMID: 38219853 DOI: 10.1016/j.phytochem.2024.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
The plant Andrographis paniculata has a long history of cultivation in Southeast Asia, especially its extensive anti-inflammatory activity, and the famous natural antibiotic andrographolide comes from this plant. In China, A. paniculata, as the main crop, has become a major source of traditional Chinese medicine (TCM) for the clinical treatment of inflammation. To further explore the diverse diterpene lactones with better anti-inflammatory activity from A. paniculata, twenty-one ent-labdanes, including six undescribed compounds (andropanilides D-I), were isolated. Their structures with absolute configurations were thoroughly determined by comprehensive NMR spectroscopic data, HRESIMS analysis and quantum chemical calculations. All isolated compounds were evaluated for anti-inflammatory activities based on the Griess method. Meanwhile, after structure-activity relationships analysis, the anti-inflammatory activity of andropanilide D (1) (IC50 = 2.31 μM) was found to be better than that of the positive control drug (dexamethasone, IC50 = 6.52 μM) and andrographolide (IC50 = 5.89 μM). Further mechanisms of activity indicated that andropanilide D significantly reduced the secretion of TNF-α, IL-6 and IL-1β and downregulated the protein expression of COX-2 and iNOS in LPS-induced RAW264.7 macrophages in a concentration-dependent manner based on Western blot and ELISA experiments. In conclusion, andropanilide D possesses potential medicinal value for the treatment of inflammation and further expands the material basis of the anti-inflammatory effect of A. paniculata.
Collapse
Affiliation(s)
- Yang Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, 230012, China; Key Laboratory for Functional Substances of Chinese Medicine and Natural Medicine State, Hefei, 230012, China
| | - Yang Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lan Ding
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Gui-Chun Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Hao Geng
- School of Sciences, Xichang University, Xichang, Sichuan, 615000, China
| | - Cheng-Yong Tan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Yi Wang
- Genpact, 1155 Avenue of the Americas 4th Fl, New York, NY, 10036, USA
| | - Jin-Song Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, 230012, China; Key Laboratory for Functional Substances of Chinese Medicine and Natural Medicine State, Hefei, 230012, China.
| | - Guo-Kai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Key Laboratory for Functional Substances of Chinese Medicine and Natural Medicine State, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
3
|
Khushboo M, Sanjeev S, Murthy MK, Sunitadevi M, Dinata R, Bhanushree B, Bidanchi RM, Nisa N, Lalrinzuali S, Manikandan B, Saeed AL, Abinash G, Pori B, Arati C, Roy VK, Gurusubramanian G. Dietary phytoestrogen diosgenin interrupts metabolism, physiology, and reproduction of Swiss albino mice: Possible mode of action as an emerging environmental contaminant, endocrine disruptor and reproductive toxicant. Food Chem Toxicol 2023; 176:113798. [PMID: 37146712 DOI: 10.1016/j.fct.2023.113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023]
Abstract
Dietary phytoestrogens are the main source of environmental contamination due to their estrogen-mimicking and endocrine-disrupting effects, posing a threat to microbial, soil, plant, and animal health. Diosgenin, a phytosteroid saponin, is used in many traditional medicines, nutraceuticals, dietary supplements, contraceptives, and hormone replacement therapies against numerous diseases and disorders. It is important to be aware of the potential risks associated with diosgenin, as well as its potential to cause reproductive and endocrine toxicity. Due to the lack of research on the safety and probable adverse side effects of diosgenin, this work evaluated the endocrine-disrupting and reproductive toxicity of diosgenin in albino mice by following acute toxicity (OECD-423), repeated dose 90-day oral toxicity (OECD-468), and F1 extended one-generation reproductive toxicity (OECD-443) studies. Diosgenin was found to be slightly toxic, with LD50 for male and female mice being 546.26 and 538.72 mg/kg, respectively. Chronic exposure of diosgenin (10, 50, 100, and 200 mg/kg) generated oxidative stress, depleted antioxidant enzymes, disturbed homeostasis of the reproductive hormones, and interrupted steroidogenesis, germ cell apoptosis, gametogenesis, sperm quality, estrous cycle, and reproductive performance in the F0 and F1 offspring. Long-term oral exposure of diosgenin to the mice disturbed the endocrine and reproductive functions and generated transgenerational reproductive toxic effects in F0 and F1 offspring. These results suggest that diosgenin should be used carefully in food products and medical applications due to its potential endocrine-disrupting and reproductive toxic effects. The findings of this study provide a better understanding of the potential adverse effects of diosgenin and the need for appropriate risk assessment and management of its use.
Collapse
Affiliation(s)
- Maurya Khushboo
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Sanasam Sanjeev
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | | | - Maibam Sunitadevi
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Roy Dinata
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Baishya Bhanushree
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | | | - Nisekhoto Nisa
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Sailo Lalrinzuali
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Bose Manikandan
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Ahmed-Laskar Saeed
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Giri Abinash
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Buragohain Pori
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Chettri Arati
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| | | |
Collapse
|
4
|
Zhang X, Zhang Y, Guo Y, Xue P, Xue Z, Zhang Y, Zhang H, Ito Y, Dou J, Guo Z. Research progress of diosgenin extraction from Dioscorea zingiberensis C. H. Wright: Inspiration of novel method with environmental protection and efficient characteristics. Steroids 2023; 192:109181. [PMID: 36642106 DOI: 10.1016/j.steroids.2023.109181] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Diosgenin was the starting materials to synthesize various hormone drugs and mainly generated from Dioscorea zingiberensis C. H. Wright by acidolysis, enzymolysis, microbiological fermentation, and integrated manner. Only acidic hydrolysis with strong acid such as hydrochloric acid or sulfuric acid was used in practice in diosgenin enterprises due to their feasibility and simplicity, nevertheless finally resulting in a great deal of unmanageable wastewater and severely polluted the surrounding environment. Aiming to provide a comprehensive and up-to date information of researches on diosgenin production from this plant, 151 cases were collected from scientific databases including Web of Science, Pubmed, Science Direct, Wiley, Springer, and China Knowledge Resource Integrated (CNKI). Their advantages and disadvantages with different production methods were analyzed based on these available data in this review paper. Considering the fact that nearly all of diosgenin enterprises were closed for the environmental protection and the life health of the people, this review paper was beneficial for providing useful guidelines to develop novel technologies with environmentally-friendly and cleaner features for diosgenin production or facilitate the transformation of other methods like enzymolysis, microbiological fermentation, or integrated methods from laboratory scale to industry scale.
Collapse
Affiliation(s)
- Xinxin Zhang
- Institute of Targeted Drugs, Western China Science and Technology Innovation Harbour, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yu Zhang
- Institute of Targeted Drugs, Western China Science and Technology Innovation Harbour, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuting Guo
- Institute of Targeted Drugs, Western China Science and Technology Innovation Harbour, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peiyun Xue
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Zhaowei Xue
- Institute of Targeted Drugs, Western China Science and Technology Innovation Harbour, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Zhang
- Xi'an Medical University, Xi'an, Shaanxi, China
| | - Hong Zhang
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Yoichiro Ito
- Laboratory of Bio-separation Technologies, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jianwei Dou
- Institute of Targeted Drugs, Western China Science and Technology Innovation Harbour, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zengjun Guo
- Institute of Targeted Drugs, Western China Science and Technology Innovation Harbour, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|