1
|
Ibba R, Sestito S, Ambrosio FA, Marchese E, Costa G, Fiorentino FP, Fusi F, Marchesi I, Polini B, Chiellini G, Alcaro S, Piras S, Carta A. Discovery of pyridoquinoxaline-based new P-gp inhibitors as coadjutant against Multi Drug Resistance in cancer. Eur J Med Chem 2024; 276:116647. [PMID: 38981337 DOI: 10.1016/j.ejmech.2024.116647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Multi-drug resistance (MDR) is a serious challenge in contemporary clinical practice and is mostly responsible for the failure of cancer medication therapies. Several experimental evidence links MDR to the overexpression of the drug efflux transporter P-gp, therefore, the discovery of novel P-glycoprotein inhibitors is required to treat or prevent MDR and to improve the absorption of chemotherapy drugs via the gastrointestinal system. In this work, we explored a series of novel pyridoquinoxaline-based derivatives designed from parental compounds, previously proved active in enhancing anticancer drugs in MDR nasopharyngeal carcinoma (KB). Among them, derivative 10d showed the most potent and selective inhibition of fluorescent dye efflux, if compared to reference compounds (MK-571, Novobiocin, Verapamil), and the highest MDR reversal activity when co-administered with the chemotherapeutic agents Vincristine and Etoposide, at non-cytotoxic concentrations. Molecular modelling predicted the two compound 10d binding mode in a ratio of 2:1 with the target protein. No cytotoxicity was observed in healthy microglia cells and off-target investigations showed the absence of CaV1.2 channel blockade. In summary, our findings indicated that 10d could potentially be a novel therapeutic coadjutant by inhibiting P-gp transport function in vitro, thereby reversing cancer multidrug resistance.
Collapse
Affiliation(s)
- Roberta Ibba
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy.
| | - Simona Sestito
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100, Sassari, Italy.
| | | | - Emanuela Marchese
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy.
| | - Giosuè Costa
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, University "Magna Græcia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy.
| | | | - Fabio Fusi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy.
| | | | - Beatrice Polini
- Department of Pathology, University of Pisa, 56100, Pisa, Italy.
| | - Grazia Chiellini
- Department of Pathology, University of Pisa, 56100, Pisa, Italy.
| | - Stefano Alcaro
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, University "Magna Græcia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy.
| | - Sandra Piras
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy.
| | - Antonio Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
2
|
Tikhomirov AS, Sinkevich YB, Dezhenkova LG, Kaluzhny DN, Ilyinsky NS, Borshchevskiy VI, Schols D, Shchekotikhin AE. Synthesis and antitumor activity of cyclopentane-fused anthraquinone derivatives. Eur J Med Chem 2024; 265:116103. [PMID: 38176358 DOI: 10.1016/j.ejmech.2023.116103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
In our pursuit of developing novel analogs of anthracyclines with enhanced antitumor efficacy and safety, we have designed a synthesis scheme for 4,11-dihydroxy-5,10-dioxocyclopenta[b]anthracene-2-carboxamides. These newly synthesized compounds exhibit remarkable antiproliferative potency against various mammalian tumor cell lines, including those expressing activated mechanisms of multidrug resistance. The structure of the diamine moiety in the carboxamide side chain emerges as a critical determinant for anticancer activity and interaction with key targets such as DNA, topoisomerase 1, and ROS induction. Notably, the introduced modification to the doxorubicin structure results in significantly increased lipophilicity, cellular uptake, and preferential distribution in lysosomes. Consequently, while maintaining an impact on anthracyclines targets, these novel derivatives also demonstrate the potential to induce cytotoxicity through pathways associated with lysosomes. In summary, derivatives of cyclic diamines, particularly 3-aminopyrrolidine, can be considered a superior choice compared to aminosugars for incorporation into natural and semi-synthetic anthracyclines or new anthraquinone derivatives, aiming to circumvent efflux-mediated drug resistance.
Collapse
Affiliation(s)
- Alexander S Tikhomirov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation
| | - Yuri B Sinkevich
- Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow, 125047, Russian Federation
| | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991, Moscow, Russian Federation
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russian Federation
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russian Federation
| | - Dominique Schols
- Rega Institute for Medical Research, K.U. Leuven, 3000, Leuven, Belgium
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation.
| |
Collapse
|
3
|
Zhidkov ME, Sidorova MA, Smirnova PA, Tryapkin OA, Kachanov AV, Kantemirov AV, Dezhenkova LG, Grammatikova NE, Isakova EB, Shchekotikhin AE, Pak MA, Styshova ON, Klimovich AA, Popov AM. Comparative Evaluation of the Antibacterial and Antitumor Activities of 9-Phenylfascaplysin and Its Analogs. Mar Drugs 2024; 22:53. [PMID: 38393024 PMCID: PMC10890213 DOI: 10.3390/md22020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Based on the results of our own preliminary studies, the derivative of the marine alkaloid fascaplysin containing a phenyl substituent at C-9 was selected to evaluate the therapeutic potential in vivo and in vitro. It was shown that this compound has outstandingly high antimicrobial activity against Gram-positive bacteria, including antibiotic-resistant strains in vitro. The presence of a substituent at C-9 of the framework is of fundamental importance, since its replacement to neighboring positions leads to a sharp decrease in the selectivity of the antibacterial action, which indicates the presence of a specific therapeutic target in bacterial cells. On a model of the acute bacterial sepsis in mice, it was shown that the lead compound was more effective than the reference antibiotic vancomycin seven out of nine times. However, ED50 value for 9-phenylfascaplysin (7) was similar for the unsubstituted fascaplysin (1) in vivo, despite the former being significantly more active than the latter in vitro. Similarly, assessments of the anticancer activity of compound 7 against various variants of Ehrlich carcinoma in mice demonstrated its substantial efficacy. To conduct a structure-activity relationship (SAR) analysis and searches of new candidate compounds, we synthesized a series of analogs of 9-phenylfascaplysin with varying aryl substituents. However, these modifications led to the reduced aqueous solubility of fascaplysin derivatives or caused a loss of their antibacterial activity. As a result, further research is required to explore new avenues for enhancing its pharmacokinetic characteristics, the modification of the heterocyclic framework, and optimizing of treatment regimens to harness the remarkable antimicrobial potential of fascaplysin for practical usage.
Collapse
Affiliation(s)
- Maxim E. Zhidkov
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Maria A. Sidorova
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Polina A. Smirnova
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Oleg A. Tryapkin
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Andrey V. Kachanov
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Alexey V. Kantemirov
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Lyubov G. Dezhenkova
- Laboratory of Chemical Transformation of Antibiotics, Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - Natalia E. Grammatikova
- Laboratory of Chemical Transformation of Antibiotics, Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - Elena B. Isakova
- Laboratory of Chemical Transformation of Antibiotics, Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - Andrey E. Shchekotikhin
- Laboratory of Chemical Transformation of Antibiotics, Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - Marina A. Pak
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Olga N. Styshova
- Departments of Biotechnology and Marine Natural Compounds Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of The Russian Academy of Sciences, 690922 Vladivostok, Russia (A.A.K.)
| | - Anna A. Klimovich
- Departments of Biotechnology and Marine Natural Compounds Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of The Russian Academy of Sciences, 690922 Vladivostok, Russia (A.A.K.)
| | - Aleksandr M. Popov
- Departments of Biotechnology and Marine Natural Compounds Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of The Russian Academy of Sciences, 690922 Vladivostok, Russia (A.A.K.)
| |
Collapse
|
4
|
Krymov SK, Salnikova DI, Dezhenkova LG, Bogdanov FB, Korlyukov AA, Scherbakov AM, Shchekotikhin AE. Synthesis and Biological Evaluation of Chalconesulfonamides: En Route to Proapoptotic Agents with Antiestrogenic Potency. Pharmaceuticals (Basel) 2023; 17:32. [PMID: 38256865 PMCID: PMC10818622 DOI: 10.3390/ph17010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Breast and other estrogen receptor α-positive cancers tend to develop resistance to existing drugs. Chalcone derivatives possess anticancer activity based on their ability to form covalent bonds with targets acting as Michael acceptors. This study aimed to evaluate the anticancer properties of a series of chalcones (7a-l) with a sulfonamide group attached to the vinyl ketone moiety. Chalconesulfonamides showed a potent antiproliferative effect at low micromolar concentrations against several cancer cell lines, including ERα-positive 4-hydroxytamoxifen-resistant MCF7/HT2. Immunoblotting of samples treated with the lead compound 7e revealed its potent antiestrogenic activity (ERα/GREB1 axis) and induction of PARP cleavage (an apoptosis marker) in breast cancer cells. The obtained compounds represent a promising basis for further development of targeted drugs blocking hormone pathways in cancer cells.
Collapse
Affiliation(s)
- Stepan K. Krymov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (S.K.K.); (L.G.D.)
| | - Diana I. Salnikova
- Department of Experimental Tumor Biology, Blokhin N. N. National Medical Research Center of Oncology, Kashirskoe sh. 24, 115522 Moscow, Russia; (D.I.S.); (F.B.B.); (A.M.S.)
| | - Lyubov G. Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (S.K.K.); (L.G.D.)
| | - Fedor B. Bogdanov
- Department of Experimental Tumor Biology, Blokhin N. N. National Medical Research Center of Oncology, Kashirskoe sh. 24, 115522 Moscow, Russia; (D.I.S.); (F.B.B.); (A.M.S.)
| | - Alexander A. Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119334 Moscow, Russia;
| | - Alexander M. Scherbakov
- Department of Experimental Tumor Biology, Blokhin N. N. National Medical Research Center of Oncology, Kashirskoe sh. 24, 115522 Moscow, Russia; (D.I.S.); (F.B.B.); (A.M.S.)
- Molecular Genetics Laboratory, Institute of Clinical Medicine, National Research Lobachevsky State University of Nizhny Novgorod, Prospekt Gagarina 23, 603950 Nizhny Novgorod, Russia
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (S.K.K.); (L.G.D.)
| |
Collapse
|