1
|
Che Y, Yu T, Dong Z, Yan L, Wang Y, Shuang S. Highly selective dual-signal readout H 2S probe: Applications in monitoring of water samples, food spoilage and live cell imaging. Talanta 2025; 284:127271. [PMID: 39591866 DOI: 10.1016/j.talanta.2024.127271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
We present a new probe (DN) for colorimetric and fluorimetric detecting hydrogen sulfide (H2S) on the basis of the H2S-triggered thiolysis of 4-nitro-2,1,3-benzoxadiazoyl (NBD) ether. In H2O/DMSO medium (9/1, v/v, pH 7.4), the aryl ether bond in DN was cleaved by H2S via nucleophilic aromatic substitution to yield a phenolate product with lighting up red fluorescence accompanied with a distinguished color transformation from yellow to pink. Probe DN features near-infrared emission (660 nm), large Stokes Shift (168 nm), good sensitivity (LOD: 15.1 nM) and relative fast response time (5 min) for specific sensing of H2S. Conveniently, a paper strips-based test kit was developed for tracking and assessing meat freshness by monitoring the release of H2S. What is more, DN is demonstrated to image both exogenous and endogenous H2S in live cells with relative short analysis time (30-60 min), providing a new research tool for exploring the relationship between H2S and clinical diseases.
Collapse
Affiliation(s)
- Yiran Che
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Ting Yu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Zhenming Dong
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Lele Yan
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
2
|
Yadav J, Bhattacharya S, Chaudhary RP. Synthesis and Excited State Proton Transfer (ESPT) Studies of 2-(6-Substitutedbenzo[d]Thiazol-2-Yl)Naphthalen-1-Ol Derivatives. J Fluoresc 2024:10.1007/s10895-024-04072-2. [PMID: 39702832 DOI: 10.1007/s10895-024-04072-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
This study reports the rapid intramolecular proton transfer studies upon photo excitation of 2-(benzo[d]thiazol-2-yl)naphthalene-1-ol derivatives, yielding tautomer emission with large Stokes shift. Employing photophysical studies, density functional theory (DFT) and, time-dependent density functional theory (TD-DFT) methods, we scrutinize excited state intramolecular proton transfer (ESIPT) modulation over varying solvent polarities. Analysis of UV-Visible and fluorescence spectra, alongside exploration of hydrogen bond dynamics, reveals solvation effects on the excited state proton transfer process. Theoretical vibrational spectra confirm enhanced hydrogen bond strength in the excited state which is sensitive to the solvent polarity. Energy profile curves and the scatter graph depict impact of solvent polarity on ESIPT. Additionally, molecular interactions and X-ray diffraction studies of the title compound 4a are presented.
Collapse
Affiliation(s)
- Jyoti Yadav
- Department of Chemistry, Sant Longowal Institute of Engineering & Technology, Longowal (Sangrur), Punjab, 148106, India
| | | | - Ram Pal Chaudhary
- Department of Chemistry, Sant Longowal Institute of Engineering & Technology, Longowal (Sangrur), Punjab, 148106, India.
| |
Collapse
|
3
|
Li NN, Liang YJ, Li HL, Wei TT, Jin ZB, Xu XY, Ren HX, Lin WY, Zong ZA, Zuo Y. An AIE probe for simultaneous monitoring of endogenous and exogenous hypochlorite and Zn 2+ at dual channels in living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8358-8365. [PMID: 39540832 DOI: 10.1039/d4ay01613k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Zn2+ and ClO- may be associated with a variety of pathologies, and their simultaneous measurement is crucial for disease diagnosis and environmental protection. In this work, we synthesized an independent AIE probe, HNTE, through a one step reaction. The probe HNTE displayed a distinctive fluorescence color change from deep yellow to blue for ClO- and to green for Zn2+. More importantly, the probe HNTE could simultaneously detect endogenous and exogenous ClO- and Zn2+ in living cells colorimetrically via the blue and green channels.
Collapse
Affiliation(s)
- Na-Na Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, PR China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China.
| | - Ye-Jin Liang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China.
- Key Laboratory of Biomedical Material Research of Guangxi (Cultivation), Baise 533000, Guangxi, PR China
| | - Hai-Long Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, PR China
| | - Ting-Ting Wei
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, PR China
| | - Zhan-Bin Jin
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, PR China
| | - Xing-Yu Xu
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, PR China
| | - Hai-Xian Ren
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, PR China
| | - Wan-Ying Lin
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China.
| | - Zi-Ao Zong
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China.
- Key Laboratory of Research on Environment and Population Health in Aluminium Mining Areas (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise 533000, Guangxi, PR China
| | - Yao Zuo
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China.
- Key Laboratory of Biomedical Material Research of Guangxi (Cultivation), Baise 533000, Guangxi, PR China
| |
Collapse
|
4
|
Zhao J, Ni Y, Tan L, Zhang W, Zhou H, Xu B. Recent advances in meat freshness "magnifier": fluorescence sensing. Crit Rev Food Sci Nutr 2024; 64:11626-11642. [PMID: 37555377 DOI: 10.1080/10408398.2023.2241553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
To address the serious waste of meat resources and food safety problems caused by the decrease in meat freshness due to the action of microorganisms and enzymes, a low-cost, time-saving and high-efficiency freshness monitoring method is urgently needed. Fluorescence sensing could act as a "magnifier" for meat freshness monitoring due to its ability to sense characteristic signal produced by meat spoilage. Here, the magnification mechanism of meat freshness via sensing the water activity, adenosine triphosphate, hydrogen ion, total volatile basic nitrogen, hydrogen sulfide, bioamines was comprehensively analyzed. The existing "magnifier" forms including paper chips, films, labels, arrays, probes, and hydrogels as well as the application in livestock, poultry and aquatic meat freshness monitoring were reviewed. Future research directions involving innovation of principles, visualization and quantification capabilities for various meats freshness were provided. By critically evaluating the potential and limitations, efficient and reliable meat freshness monitoring strategies wish to be developed for the post-epidemic era.
Collapse
Affiliation(s)
- Jinsong Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Wendi Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| |
Collapse
|
5
|
Zhou X, Wang X, Cui X, Zhao Y, Meng X, Wang Q, Zhang C, Zhou J, Meng Q. Influence of atomic electronegativity on ESIPT behaviour for the BTDI and its derivatives: Theoretical exploration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124321. [PMID: 38692103 DOI: 10.1016/j.saa.2024.124321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
In this work, we theoretically explored the influence of atomic electronegativity on excited-state intramolecular proton transfer (ESIPT) behavior among novel fluorescent probes BTDI and its derivatives (BODI and BSeDI). A thorough examination of the optimized structural parameters and infrared vibrational spectra reveals an enhancement in intramolecular hydrogen bonding within BTDI and its derivatives upon light excitation. This finding is further reinforced by topological analysis and interaction region indicator scatter plots, which underscores the sensitivity of atomic electronegativity to variations in hydrogen bonding strength. With regards to absorption and fluorescence spectra, the decrease in atomic electronegativity leads to a pronounced redshift, primarily attributed to the narrowing of the energy gap. Additionally, an analysis of potential energy curves and the exploration of intrinsic reaction coordinate paths based on transition state structures afford a deeper understanding of the mechanism underlying ESIPT and being modulated through the manipulation of atomic electronegativity. We anticipate that this work on atomic electronegativity regulating ESIPT behavior will serve as a catalyst for novel fluorescent probes in the future, offering fresh perspectives and insights.
Collapse
Affiliation(s)
- Xucong Zhou
- School of Basic Medical Sciences, School of Public Health, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China.
| | - Xin Wang
- School of Basic Medical Sciences, School of Public Health, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Xixi Cui
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Yu Zhao
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, China
| | - Xiangguo Meng
- School of Basic Medical Sciences, School of Public Health, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Qinghua Wang
- School of Basic Medical Sciences, School of Public Health, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Changzhe Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Jin Zhou
- School of Basic Medical Sciences, School of Public Health, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China.
| | - Qingtian Meng
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
6
|
Deng W, Li S, Zhou M, Zheng M, Wang P, An Y. Ratiometric peptide-based fluorescent probe with large Stokes shift for detection of Hg 2+ and S 2- and its applications in cells imaging and smartphone-assisted recognition. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124306. [PMID: 38640624 DOI: 10.1016/j.saa.2024.124306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
In this work, a new ratiometric fluorescent probe DKA was synthesized based on the double sides of lysine backbone conjugated with alanine and dansyl groups. DKA exhibited fluorescence ratiometric response for Hg2+ with high sensitivity (13.4 nM), specific selectivity (only Hg2+), strong anti-interference ability (no interference), fast recognition (within 60 s) and wide pH range (5-10). The stoichiometry of binding of DKA and Hg2+ was determined to be 1:1 via Job's plot, ESI-HRMS and 1HNMR titration analysis. Subsequently, the in situ formation of DKA-Hg2+ complex was used for highly selective detection of S2- as a novel fluorescence "on-off" probe, and the lowest detection limit for S2- was 12.9 nM. In addition, DKA possessed excellent cells permeation and low toxicity, and fluorescence imaging of Hg2+ and S2- was performed in living Hacat cells. Most importantly, the digital imaging using a smartphone color recognition APP indicated that DKA could semi-quantitatively and visually detected Hg2+ and S2- without expensive equipment.
Collapse
Affiliation(s)
- Weiliang Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Shiyang Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Miao Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Maoyue Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Yong An
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730030, PR China.
| |
Collapse
|
7
|
Tang XH, Zhang HN, Wang WL, Wang QM. An Aggregation-Induced Fluorescence Probe for Detection H 2S and Its Application in Cell Imaging. Molecules 2024; 29:2386. [PMID: 38792250 PMCID: PMC11124099 DOI: 10.3390/molecules29102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Monitoring hydrogen sulfide (H2S) in living organisms is very important because H2S acts as a regulator in many physiological and pathological processes. Upregulation of endogenous H2S concentration has been shown to be closely related to the occurrence and development of tumors, atherosclerosis, neurodegenerative diseases and diabetes. Herin, a novel fluorescent probe HND with aggregation-induced emission was designed. Impressively, HND exhibited a high selectivity, fast response (1 min) and low detection limit (0.61 μM) for H2S in PBS buffer (10 mM, pH = 7.42). Moreover, the reaction mechanism between HND and H2S was conducted by Job's plot, HR-MS, and DFT. In particular, HND was successfully employed to detect H2S in HeLa cells.
Collapse
Affiliation(s)
- Xin-Hui Tang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224051, China; (H.-N.Z.); (W.-L.W.)
| | | | | | - Qing-Ming Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224051, China; (H.-N.Z.); (W.-L.W.)
| |
Collapse
|
8
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
9
|
Chen X, Zhang X, Han J, Xia SH. Photochemical Mechanisms of Hydroxyquinoline Benzimidazole: Insights from Electronic Structure Calculations and Nonadiabatic Dynamics Simulations. J Phys Chem A 2024; 128:1984-1992. [PMID: 38446415 DOI: 10.1021/acs.jpca.3c07298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Excited-state intramolecular double proton transfer (ESIDPT) has received much attention because of its widespread existence in the life reactions of living organisms, and materials with this property are significant for their special luminescent properties. In this work, the complete active space self-consistent field (CASSCF) and OM2/multireference configuration interaction (OM2/MRCI) methods have been employed to study the static electronic structure calculations of the photochemistry and the possibility of ESIDPT process of hydroxyquinoline benzimidazole (HQB) molecule, along with the nonadiabatic dynamics simulations. The computational results show that the HQB molecule is relaxed to the S1-ENOL minimum after being excited to the Franck-Condon point in the S1 state. Subsequently, during the nonadiabatic deactivation process, the OH···N proton transfer and the twisting of benzimidazole occur before arriving at the single proton transfer conical intersection S1S0-KETO. Finally, the system can either return to the initial ground-state structure S0-ENOL or to the single proton transfer ground-state structure S0-KETO, both of which have almost the same probability. The dynamics simulations also show that no double proton transfer occurs. The excited-state lifetime of HQB is fitted to 1.1 ps, and only 64% of the dynamic trajectories return to the ground state within the 2.0 ps simulation time. We hope the detailed reaction mechanism of the HQB molecule will provide new insights into similar systems.
Collapse
Affiliation(s)
- Xiaohang Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - XinYu Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Juan Han
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shu-Hua Xia
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
10
|
Guo MY, Liu XJ, Li YZ, Wang BZ, Yang YS, Zhu HL. A human serum albumin-binding-based fluorescent probe for monitoring hydrogen sulfide and bioimaging. Analyst 2024; 149:1280-1288. [PMID: 38226660 DOI: 10.1039/d3an01821k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
In this work, a fluorescent probe, TPABF-HS, was developed for detecting hydrogen sulfide (H2S) using a human serum albumin (HSA)-binding-based approach for amplifying the fluorescence signal and extending the linear correlation range. Compared to the most recent probes for H2S, the most interesting feature of the detection system developed herein was the especially wide linear range (0-1000 μM (0-100 eq.)), which covered the physiological and pathological levels of H2S. TPABF-HS could be used in applications high sensitivity and selectivity with an LOD value of 0.42 μM. Further, site-competition experiments and molecular docking simulation experiments indicated that signal amplification was realized by the binding of the TPABF fluorophore to the naproxen-binding site of HSA. Moreover, the extension of the measurement span could allow for applications in living cells and Caenorhabditis elegans for imaging both exogenous and endogenous H2S. This work brings new information to the strategy of signal processing by exploiting fluorescent probes.
Collapse
Affiliation(s)
- Meng-Ya Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Xiao-Jing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Yun-Zhang Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Bao-Zhong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Jinhua Advanced Research Institute, Jinhua 321019, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
11
|
Nehra N, Kaushik R. ESIPT-based probes for cations, anions and neutral species: recent progress, multidisciplinary applications and future perspectives. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5268-5285. [PMID: 37800698 DOI: 10.1039/d3ay01249b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Fluorescent and colourimetric probes for small analytes (cations, anions and neutral molecules) have drawn significant attention in recent years. These probes interact with analytes and induce spectral change due to the variations in the photo-physical properties of the fluorophore/chromophore used. Among several photo-physical mechanisms, ESIPT (excited state intramolecular proton transfer) based probes are more advantageous due to their photo-physical properties viz. solvent polarity effect, large spectral shift with multi-channel fluorescence, high quantum yield etc. In recent years, ESIPT-based probes have shown several promising applications, especially monitoring small analytes in biological samples, smartphone app-assisted heavy metal detection in environmental samples, inkless writing, anti-counterfeiting applications etc. Therefore, this review is dedicated to recently reported ESIPT-based probes for small analytes. We have highlighted the organic units responsible for the ESIPT mechanism, their photo-physical parameters, selectivity and sensitivity properties and recent advances in their applications.
Collapse
Affiliation(s)
- Nidhi Nehra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Rahul Kaushik
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
12
|
Sun TT, Man RJ, Shi JY, Wang X, Zhao M, Hu HY, Wang CY. A selective fluorescent probe for hydrogen sulfide from a series of flavone derivatives and intracellular imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122840. [PMID: 37196554 DOI: 10.1016/j.saa.2023.122840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
In this work, through the orthogonal design of two fluorophores and two recognition groups, a series of fluorescent probes were developed from the flavone derivatives for hydrogen sulfide (H2S). The probe FlaN-DN stood out from the primarily screening on the selectivity and response intensities. It could respond to H2S with both the chromogenic and fluorescent signals. Among the recent reported probes for the H2S detection, FlaN-DN indicated the most highlighted advantages including the rapid response (within 200 s) and the high response multiplication (over 100 folds). FlaN-DN was sensitive to the pH condition, thus could be applied to distinguish the cancer micro-environment. Moreover, FlaN-DN suggested practical capabilities including a wide linear range (0-400 μM), a relatively high sensitivity (limit of detection 0.13 μM), and high selectivity towards H2S. As a low cytotoxic probe, FlaN-DN achieved the imaging in living HeLa cells. FlaN-DN could detect the endogenous generation H2S and visualize the dose-dependent responses to the exogenous H2S level. This work provided a typical case of natural-sourced derivatives as functional implements, which might inspire the future investigations.
Collapse
Affiliation(s)
- Ting-Ting Sun
- Jinhua Advanced Research Institute, Jinhua 321019, China
| | - Ruo-Jun Man
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530008, China.
| | - Jing-Yi Shi
- Jinhua Advanced Research Institute, Jinhua 321019, China
| | - Xiao Wang
- Jinhua Advanced Research Institute, Jinhua 321019, China
| | - Min Zhao
- Jinhua Advanced Research Institute, Jinhua 321019, China; School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Hong-Yu Hu
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, Zhejiang, China.
| | - Chao-Yue Wang
- Jinhua Advanced Research Institute, Jinhua 321019, China.
| |
Collapse
|
13
|
Li Z, Xiao L, Sun X, Luo C, Li R, Zhang W, Wang Z, Xiao H, Shu W. An ESIPT-based ratiometric fluorescent probe for detecting H 2O 2 in water environment and biosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161609. [PMID: 36642271 PMCID: PMC9837204 DOI: 10.1016/j.scitotenv.2023.161609] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/01/2023]
Abstract
The outbreak of the COVID-19 has resulted in a great increase in the use of H2O2 disinfectant, which is listed as one of the commonly used disinfectants for COVID-19 by the U.S. Environmental Protection Agency. However, excessive use of H2O2 disinfectant can threaten human health and damage the water environment. Therefore, it's of great importance to detect H2O2 in aquatic environments and biological systems. Herein, we proposed a novel ESIPT ratio fluorescent probe (named probe 1) for detecting H2O2 in water environment and biosystems. Probe 1 emits blue fluorescence as the introduction of the phenylboronic acid disrupts the ESIPT process. After reacting with H2O2, the phenylboronic acid is oxidatively removed, and the ESIPT process is restored, which makes the fluorescence emission wavelength red-shifted. Probe 1 exhibited a short response time, high sensitivity, and a large Stokes shift to H2O2. Importantly, it has been successfully used to detect H2O2 not only in actual water samples, but also endogenous and exogenous H2O2 in living cells. The characteristics of probe 1 have a wide range of applications in environmental and biological systems.
Collapse
Affiliation(s)
- Zhuohang Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Liyan Xiao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Xiaoqian Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Chenyao Luo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Rencheng Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Wenbo Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Zicheng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
14
|
Zhang Y, Chen Y, Shi X, Bai Y, He W, Guo Z. A sensitive and ratiometric fluorescent probe for imaging cytosolic H 2S generation. NEW J CHEM 2022. [DOI: 10.1039/d2nj04533h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CouMa responded to H2S within 3 minutes ratiometrically, based on an indol–coumarin fluorophore. The positively-charged probe accumulated in cytosol, and imaged NO-relevant H2S generation increment and depression in cytosol of living cells.
Collapse
Affiliation(s)
- Yuming Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226300, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, P. R. China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, P. R. China
| | - Xiangchao Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, P. R. China
| | - Yang Bai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, P. R. China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|