1
|
Wang S, Wang D, Wang G, Zhang M, Sun Y, Ding J. Antibacterial carbon dots. Mater Today Bio 2025; 30:101383. [DOI: 10.1016/j.mtbio.2024.101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
2
|
Zou Z, Purnawan MA, Wang Y, Ismail BB, Zhang X, Yang Z, Guo M. A novel antimicrobial peptide WBp-1 from wheat bran: Purification, characterization and antibacterial potential against Listeria monocytogenes. Food Chem 2025; 463:141261. [PMID: 39321596 DOI: 10.1016/j.foodchem.2024.141261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
This study introduces a novel antimicrobial peptide (AMP), WBp-1, isolated from wheat bran and purified via reversed-phase high-performance liquid chromatography. The amino acid sequence, determined as IITGASSGIGKAIAKHFI by LC-MS/MS, was composed predominantly of alkaline and hydrophobic residues. WBp-1 was predicted to be a stable, hydrophobic, cationic peptide with an α-helical structure. Moreover, it displayed significant antibacterial efficacy against Listeria monocytogenes, with a minimum inhibitory concentration of 150 μg/mL. Further mechanistic studies suggest that WBp-1 exerts its bactericidal activity by disrupting cell membrane integrity, impeding peptidoglycan synthesis by binding to penicillin-binding protein 4 via hydrogen bonding, increasing cell permeability, altering membrane potential and fluidity, and altering surface hydrophobicity. Interestingly, WBp-1 showed minimal hemolytic activity and cytotoxicity against LO2 cells, even at 16× MIC. These findings highlight the strong potential of WBp-1 as a novel antibacterial agent and food preservative against Listeria monocytogenes.
Collapse
Affiliation(s)
- Zhipeng Zou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Michelle A Purnawan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Yiming Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
3
|
Tivari S, Kokate SV, Belmonte-Vázquez JL, Pawar TJ, Patel H, Ahmad I, Gayke MS, Bhosale RS, Jain VD, Muteeb G, Delgado-Alvarado E, Jadeja Y. Synthesis and Evaluation of Biological Activities for a Novel 1,2,3,4-Tetrahydroisoquinoline Conjugate with Dipeptide Derivatives: Insights from Molecular Docking and Molecular Dynamics Simulations. ACS OMEGA 2023; 8:48843-48854. [PMID: 38162790 PMCID: PMC10753551 DOI: 10.1021/acsomega.3c05961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Peptide synthesis has opened new frontiers in the quest for bioactive molecules with limitless biological applications. This study presents the synthesis of a series of novel isoquinoline dipeptides using advanced spectroscopic techniques for characterization. These compounds were designed with the goal of discovering unexplored biological activities that could contribute to the development of novel pharmaceuticals. We evaluated the biological activities of novel compounds including their antimicrobial, antibacterial, and antifungal properties. The results show promising activity against Escherichia coli and potent antibacterial activity against MTCC 443 and MTCC 1688. Furthermore, these compounds demonstrate strong antifungal activity, outperforming existing standard drugs. Computational binding affinity studies of tetrahydroisoquinoline-conjugated dipeptides against E. coli DNA gyrase displayed significant binding interactions and binding affinity, which are reflected in antimicrobial activities of compounds. Our integrative significant molecular findings from both wet and dry laboratories would help pave a path for the development of antimicrobial therapeutics. The findings suggest that these isoquinoline-conjugated dipeptides could be excellent candidates for drug development, with potential applications in the fight against bacterial and fungal infections. This research represents an exciting step forward in the field of peptide synthesis and its potential to discover novel bioactive molecules with significant implications for human health.
Collapse
Affiliation(s)
- Sunil
R. Tivari
- Department
of Chemistry, Marwadi University, Rajkot, Gujarat 360003, India
| | - Siddhant V. Kokate
- Department
of Chemistry, S.S.C. College, Junnar, Pune, Maharashtra 410502, India
| | - José L. Belmonte-Vázquez
- Facultad
de Química, Universidad Nacional
Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Tushar Janardan Pawar
- Red
de Estudios Moleculares Avanzados, Clúster
Científico y Tecnológico BioMimic del Instituto de Ecología, A.C. Carretera Antigua a Coatepec
351, Xalapa, Veracruz91073, Mexico
| | - Harun Patel
- Department
of Pharmaceutical Chemistry, R. C. Patel
Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Iqrar Ahmad
- Department
of Pharmaceutical Chemistry, R. C. Patel
Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Manoj S. Gayke
- Department
of Chemistry, School of Science, Indrashil
University, Mehsana, Gujarat 382715, India
| | - Rajesh S. Bhosale
- Department
of Chemistry, School of Science, Indrashil
University, Mehsana, Gujarat 382715, India
| | - Vicky D. Jain
- Department
of Chemistry, Marwadi University, Rajkot, Gujarat 360003, India
| | - Ghazala Muteeb
- Department
of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Enrique Delgado-Alvarado
- Micro
and Nanotechnology Research Center, Universidad
Veracruzana, Blvd. Av. Ruiz Cortines No. 455 Fracc, Costa Verde, Boca del Río 94294, Mexico
- Facultad
de Ciencias Químicas, Universidad
Veracruzana, Blvd. Av. Ruiz Cortines No. 455 Fracc, Costa Verde, Boca del Río 94294, Mexico
| | | |
Collapse
|
4
|
Tivari SR, Kokate SV, Delgado-Alvarado E, Gayke MS, Kotmale A, Patel H, Ahmad I, Sobhia EM, Kumar SG, Lara BG, Jain VD, Jadeja Y. A novel series of dipeptide derivatives containing indole-3-carboxylic acid conjugates as potential antimicrobial agents: the design, solid phase peptide synthesis, in vitro biological evaluation, and molecular docking study. RSC Adv 2023; 13:24250-24263. [PMID: 37583660 PMCID: PMC10423974 DOI: 10.1039/d3ra04100j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/23/2023] [Indexed: 08/17/2023] Open
Abstract
A new library of peptide-heterocycle hybrids consisting of an indole-3-carboxylic acid constituent conjugated with short dipeptide motifs was designed and synthesized by using the solid phase peptide synthesis methodology. All the synthesized compounds were characterized by spectroscopic techniques. Additionally, the synthesized compounds were subjected to in vitro antimicrobial activities. Two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and two Gram-positive (Streptococcus pyogenes and Staphylococcus aureus) were used for the evaluation of the antibacterial activity of the targeted dipeptide derivatives. Good antibacterial activity was observed for the screened analogues by comparing their activities with that of ciprofloxacin, the standard drug. Also, two fungi (Aspergillus niger and Candida albicans) were employed for the evaluation of the antifungal activity of the synthesized compounds. When compared to the standard drug Fluconazole, it was observed that the screened analogues exhibited good antifungal activity. In continuation, all the synthesized derivatives were subjected to integrated molecular docking studies and molecular dynamics simulations to investigate binding affinities, intermolecular interaction networks, and conformational flexibilities with deoxyribonucleic acid (DNA) gyrase and lanosterol-14-alpha demethylase. The molecular docking studies revealed that indole-3-carboxylic acid conjugates exhibited encouraging binding interaction networks and binding affinity with DNA gyrase and lanosterol-14 alpha demethylase to show antibacterial and antifungal activity, respectively. Such synthesis, biological activity, molecular dynamics simulations, and molecular docking studies of short peptides with an indole conjugate unlock the door for the near future advancement of novel medicines containing peptide-heterocycle hybrids with the ability to be effective as antimicrobial agents.
Collapse
Affiliation(s)
- Sunil R Tivari
- Department of Chemistry, Marwadi University Rajkot-360003 Gujarat India
| | - Siddhant V Kokate
- Departamento de Química, Universidad de Guanajuato Noria Alta S/N, Guanajuato-36050 Guanajuato Mexico
| | - Enrique Delgado-Alvarado
- Micro and Nanotechnology Research Center, Universidad Veracruzana Blvd. Av. Ruiz Cortines No. 455 Fracc. Costa Verde Boca del Río 94294 Mexico
- Facultad de Ciencias Quimicas, Universidad Veracruzana Blvd. Av. Ruiz Cortines No. 455 Fracc. Costa Verde Boca del Río 94294 Mexico
| | - Manoj S Gayke
- Indrashil University Rajpur, Kadi Mehsana 382740 Gujarat India
| | - Amol Kotmale
- Department of Chemistry, Savitribai Phule Pune University Pune 411007 Maharashtra India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R C. Patel Institute of Pharmaceutical Education and Research Shirpur District Dhule 425405 Maharashtra India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R C. Patel Institute of Pharmaceutical Education and Research Shirpur District Dhule 425405 Maharashtra India
| | | | - Siva G Kumar
- Department of Medicinal Chemistry, Sri Venkateswara College of Pharmacy Chittoor 517127 Andhra Pradesh India
| | - Bianey García Lara
- Departamento de Química, Universidad de Guanajuato Noria Alta S/N, Guanajuato-36050 Guanajuato Mexico
| | - Vicky D Jain
- Department of Chemistry, Marwadi University Rajkot-360003 Gujarat India
| | | |
Collapse
|