1
|
Wu P, Goujon G, Pan S, Tuccio B, Pégot B, Dagousset G, Anselmi E, Magnier E, Bolm C. Cyclic Sulfoximines as Methyl and Perdeuteromethyl Transfer Agents and Their Applications in Photoredox Catalysis. Angew Chem Int Ed Engl 2024; 63:e202412418. [PMID: 39234959 DOI: 10.1002/anie.202412418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Benzo[1,3,2]dithiazole-1,1,3-trioxides are bench-stable and easy-to-use reagents. In photoredox catalysis, they generate methyl and perdeuteromethyl radicals which can add to a variety of radical acceptors, including olefins, acrylamides, quinoxalinones, isocyanides, enol silanes, and N-Ts acrylamide. As byproduct, a salt is formed which can be regenerated to the original methylating agent. Flow chemistry provides an option for reaction scale-up further underscoring the synthetic usefulness of these methylation reagents. Mechanistic investigations suggest a single-electron transfer (SET) pathway induced by photoredox catalysis.
Collapse
Affiliation(s)
- Peng Wu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Gabriel Goujon
- Institut Lavoisier de Versailles, Université Paris-Saclay, 78000, Versailles, France
| | - Shulei Pan
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Béatrice Tuccio
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397, Marseille Cedex 20, France
| | - Bruce Pégot
- Institut Lavoisier de Versailles, Université Paris-Saclay, 78000, Versailles, France
| | - Guillaume Dagousset
- Institut Lavoisier de Versailles, Université Paris-Saclay, 78000, Versailles, France
| | - Elsa Anselmi
- Institut Lavoisier de Versailles, Université Paris-Saclay, 78000, Versailles, France
- Université de Tours, Faculté des Sciences et Techniques, 37200, Tours, France
| | - Emmanuel Magnier
- Institut Lavoisier de Versailles, Université Paris-Saclay, 78000, Versailles, France
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
2
|
Zhang L, Zhang S, Zhang Y, Liu B, Li X, Han B. Navigating The Deuteration Landscape: Innovations, Challenges, and Clinical Potential of Deuterioindoles. Chembiochem 2024:e202400837. [PMID: 39658812 DOI: 10.1002/cbic.202400837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
Indoles, pivotal to the realm of drug discovery, underpin numerous FDA-approved therapeutics. Despite their clinical benefits, pharmacokinetic and toxicity concerns have occasionally hampered their broader application. A notable advancement in this domain is the substitution of hydrogen atoms with deuterium, known as deuterium modification, which significantly enhances the pharmacological properties of these compounds. This review elucidates the progression of deuterium chemistry, culminating in approval of Deutetrabenazine in 2017. This milestone has catalyzed additional research into deuterated indoles, such as Dosimertinib, which have demonstrated enhancements in stability, toxicity profiles, and therapeutic efficacy. Moreover, the review addresses challenges and patent issues in the synthesis of deuterated indoles and highlights their potential applications in precision medicine. In the future, deuterated indoles may positively impact therapy and contribute to advances in precision medicine through molecular engineering.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shujingwei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
3
|
Wood WW. Deuterated Drugs: Isotope Distribution and Impurity Profiles. J Med Chem 2024; 67:16991-16999. [PMID: 39356646 DOI: 10.1021/acs.jmedchem.4c01694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A recent review identified the problem of lower isotopologues in deuterated active pharmaceutical ingredients (APIs) as a critical issue in this area of medicinal chemistry. In this Perspective, the relationship between overall enrichment and isotope distribution for deuterated APIs is discussed. Deuterated APIs are divided into single deuterium, methyl-d3, and polydeuterated compounds. For the latter category, distribution calculations demonstrate that the parent deuterated API contains significant quantities of the lower isotopologues. As an alternative to the use of overall enrichment to describe these compounds, it is suggested that describing these compounds with a distribution profile should be preferred, giving an accurate and defensible description of the API. Using this approach, the lower isotopologues become an integral part of the API and not an impurity.
Collapse
Affiliation(s)
- William W Wood
- Wakefield Chemistry Consulting LLC, Bel Air, Maryland 21015, United States
| |
Collapse
|
4
|
Yan T, Wang T, Tang M, Liu N. Comparative efficacy and safety of JAK inhibitors in the treatment of moderate-to-severe alopecia areata: a systematic review and network meta-analysis. Front Pharmacol 2024; 15:1372810. [PMID: 38659584 PMCID: PMC11039836 DOI: 10.3389/fphar.2024.1372810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
We performed a Bayesian network meta-analysis to indirectly compare the relative efficacy and safety of the latest JAK inhibitors for moderate-to-severe alopecia areata (AA). 13 trials totaling 3,613 patients were included. Two low-dose groups of oral formulations (ritlecitinib 10mg and ivarmacitinib 2mg) and two topical formulations (delgocitinib ointment and ruxolitinib cream) appeared to be relatively ineffective against moderate-to-severe AA. Ranking analysis suggested that brepocitinib 30mg has the best relative effect in reducing the SALT score (sucra = 0.9831), and demonstrated comparable efficacy to deuruxolitinib 12mg (sucra = 0.9245), followed by deuruxolitinib 8mg (sucra = 0.7736). Regarding the SALT50 response, brepocitinib 30mg ranked highest (sucra = 0.9567), followed by ritlecitinib 50mg (sucra = 0.8689) and deuruxolitinib 12mg (sucra = 0.7690). For achieving the SALT75 response, deuruxolitinib 12mg had the highest probability (sucra = 0.9761), followed by deuruxolitinib 8mg (sucra = 0.8678) and brepocitinib 30mg (sucra = 0.8448). Deuruxolitinib 12mg might be the most effective therapy for patients with severe AA (sucra = 0.9395), followed by ritlecitinib 50mg (sucra = 0.8753) and deuruxolitinib 8mg (sucra = 0.8070). Deuruxolitinib 12mg/8mg demonstrated notable efficacy for moderate-to-severe AA, and is expected to be a new treatment option for AA. It was worth noting that deuruxolitinib exhibit a greater likelihood of causing adverse events in comparison to other JAK inhibitors. Ritlecitinib 50mg seemed to exhibit fewer adverse effects in the high-dose groups of oral JAK inhibitors and might be an optimal choice to balance safety and efficacy. The majority of JAK inhibitors exhibited acceptable short-term safety profiles. To enhance the applicability and accuracy of our research, further head-to-head trials with longer follow-up periods are needed. Systematic Review Registration: identifier [CRD42022368012].
Collapse
Affiliation(s)
- Ting Yan
- Department of Pharmacy, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ting Wang
- Department of Pharmacy, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Mei Tang
- Department of Pharmacy, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Nan Liu
- Departments of Nuclear Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Li P, Du Z, Wu B, Zhao X, You Y. Highly effective and selective FeBr 3-promoted deuterium bromination/cyclization of 1, n-enynes. Org Biomol Chem 2024; 22:959-964. [PMID: 38205648 DOI: 10.1039/d3ob01778h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A highly effective and selective FeBr3-promoted deuterium bromination/cyclization of 1,n-enynes is reported. On the one hand, the Lewis acid FeBr3 as a catalyst promotes cyclization of 1,n-enynes to afford deuterium heterocyclic frameworks with high efficiency. On the other hand, FeBr3 serves as the bromine source (with D2O as the deuterium source) to promote the formation of the desired deuterated pyrrole derivatives containing alkenyl bromide groups. This protocol provides an effective pathway to afford deuterated alkenyl brominative compounds as (Z)-isomers with high yields and selectivity, offering a new method for introducing 2H into organic compounds.
Collapse
Affiliation(s)
- Ping Li
- Department of Cable Engineering, Henan Institute of Technology, Xinxiang, 453000, China
| | - Zhongjian Du
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China.
| | - Baofeng Wu
- Research Institute of Exploration and Development, PetroChina, Daqing Oilfield Company, Daqing 163712, China
| | - Xin Zhao
- Research Institute of Exploration and Development, PetroChina, Daqing Oilfield Company, Daqing 163712, China
| | - Yang'en You
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China.
| |
Collapse
|
6
|
Ma Y, Deng J, Gu J, Jiang D, Lv K, Ye X, Yao Q. Recent progress in photoinduced direct desulfurization of thiols. Org Biomol Chem 2023; 21:7873-7879. [PMID: 37750040 DOI: 10.1039/d3ob01274c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The reduction of mercaptans plays an important role in diverse areas such as protein synthesis, polymer science, environmental study, and pharmaceutical chemistry. Despite significant advancements in this area, particularly in light-induced transformations, review articles have rarely been reported on this topic. Thus, this review article emphasizes the direct photoinduced desulfurization and functionalization of thiols to alkanes or coupling products, with a focus on significant advancements made in the last decade. The progress is discussed according to the types of bonds formed from the cleavage of Csp3-SH bonds.
Collapse
Affiliation(s)
- Yuhong Ma
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Jinfei Deng
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Jianyu Gu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Dengbo Jiang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Kaizhuo Lv
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
| | - Xiushen Ye
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Qiuli Yao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China.
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| |
Collapse
|
7
|
Dong Y, Meng X, Gnawali G, Chang M, Wang W. Photoredox Catalytic Installation of an Alkyl/Aryl Side Chain and Deuterium into ( S)-Methyleneoxazolidinone: Synthesis of Enantioenriched α-Deuterated α-Amino Acid Derivatives. Org Lett 2023. [PMID: 37326373 DOI: 10.1021/acs.orglett.3c01760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A photoredox catalytic asymmetric method has been established for the installation of both aliphatic and aromatic side chains and the introduction of deuterium into the chiral methyleneoxazolidinone simultaneously. Efficient coupling of readily available boronic acids with the chiral auxiliary delivers structurally diverse α-deuterated α-amino acid derivatives with a high level of diastereoselectivity and deuteration.
Collapse
Affiliation(s)
- Yue Dong
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Xiang Meng
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Giri Gnawali
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Mengyang Chang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Wei Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|