1
|
Wang X, Li YR, Wu J, Niu JB, Song J, Zhang SY. Discovery of 2,4-diaminopyrimidine derivatives as potent inhibitors of FAK capable of activating the Hippo pathway for the treatment of esophageal squamous cell carcinoma. Eur J Med Chem 2025; 287:117328. [PMID: 39947050 DOI: 10.1016/j.ejmech.2025.117328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/24/2025]
Abstract
In this work, we report the discovery of 2,4-diaminopyrimidine derivatives bearing a urea moiety as FAK inhibitors capable of activating the Hippo pathway in Esophageal Squamous Cell Carcinoma (ESCC). Extensive structure-activity relationship studies were conducted based on the lead FAK inhibitor TAE-226 to enhance the inhibitory potency, and the most potent compound 8b (MY-1576) as a FAK inhibitor ultimately was identified. Compound MY-1576 exhibited potent FAK inhibitory activity, in vitro anticancer activities, and acceptable PK properties. Notably, MY-1576 could activate the Hippo pathway, resulting in impeding YAP/TAZ regulation. MY-1576 also effectively suppressed the tumor growth in the KYSE30 xenograft mouse models with good safety profiles, and potently down-regulated the autophosphorylation of FAK and the levels of YAP/TAZ in vivo. Taken together, these results indicate that MY-1576, functioning as a FAK inhibitor capable of activating the Hippo pathway, is a promising candidate against ESCC.
Collapse
Affiliation(s)
- Xiao Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yin-Ru Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ji Wu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Li Y, Zhang Y, Zhang J, Zhan Z, Mao W. Development of novel focal adhesion kinase (FAK) inhibitors for targeting cancer: Structural insights and therapeutic potential. Eur J Med Chem 2024; 279:116913. [PMID: 39357313 DOI: 10.1016/j.ejmech.2024.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase frequently overexpressed in various cancer cells, facilitating tumor growth through the regulation of cell adhesion, migration, and proliferation. Consequently, targeting FAK is considered a promising anti-tumor strategy, particularly for invasive cancers. Numerous potent small-molecule inhibitors have progressed to clinical trials. Among these, Defactinib is under evaluation for regulatory approval as a treatment for ovarian serous tumors. Furthermore, novel FAK inhibitors, including PROTACs, have emerged as key research focuses, anticipated to overcome the limitations of traditional inhibitors. In this Perspective, we highlight the protein structure, biological functions, relevant signaling pathways, and associations of FAK with cancer development. We also analyze the clinical status of FAK inhibitors, paying special attention to the various classes of FAK inhibitors, with detailed analyses of their chemical structures, structure-activity relationships (SARs), bioactivity profiles, selectivity profiles, and therapeutic potentials.
Collapse
Affiliation(s)
- Yingnan Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Yuming Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China; West China College of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China.
| |
Collapse
|
3
|
Sai Madhurya M, Thakur V, Dastari S, Shankaraiah N. Pyrrolo[2,3-d]pyrimidines as potential kinase inhibitors in cancer drug discovery: A critical review. Bioorg Chem 2024; 153:107867. [PMID: 39388837 DOI: 10.1016/j.bioorg.2024.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/23/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Pyrrolo[2,3-d]pyrimidine-based kinase inhibitors have emerged as an important class of targeted therapeutics to combat various types of cancer. The distinctive structural feature of pyrrolopyrimidine ring system offers an adaptable platform for designing potent inhibitors of various kinases, crucial in regulating cellular processes. The deazapurine framework inherent to pyrrolopyrimidines bears a conspicuous resemblance to adenine, the natural ligand ATP. The structural mimicry enhances their appeal as potent inhibitors of key kinases. This review reconnoitres the intricate process of designing and developing pyrrolopyrimidine based derivatives, accentuating their structural diversity and the strategic modifications employed to enhance selectivity, potency, and pharmacokinetic properties. The discussion delves into medicinal chemistry strategies, highlighting successful examples that have been progressed to clinical evaluation. Furthermore, the review highlights the promise of pyrrolopyrimidine scaffolds in revolutionizing targeted cancer therapy and provides a pioneering perspective on future directions.
Collapse
Affiliation(s)
- Malyala Sai Madhurya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Vanashree Thakur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Sowmya Dastari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| |
Collapse
|
4
|
Wang X, Li N, Liu YH, Wu J, Liu QG, Niu JB, Xu Y, Huang CZ, Zhang SY, Song J. Targeting focal adhesion kinase (FAK) in cancer therapy: A recent update on inhibitors and PROTAC degraders. Eur J Med Chem 2024; 276:116678. [PMID: 39029337 DOI: 10.1016/j.ejmech.2024.116678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
Focal adhesion kinase (FAK) is considered as a pivotal intracellular non-receptor tyrosine kinase, and has garnered significant attention as a promising target for anticancer drug development. As of early 2024, a total of 12 drugs targeting FAK have been approved for clinical or preclinical studies worldwide, including three PROTAC degraders. In recent three years (2021-2023), significant progress has been made in designing targeted FAK anticancer agents, including the development of a novel benzenesulfofurazan type NO-releasing FAK inhibitor and the first-in-class dual-target inhibitors simultaneously targeting FAK and HDACs. Given the pivotal role of FAK in the discovery of anticancer drugs, as well as the notable advancements achieved in FAK inhibitors and PROTAC degraders in recent years, this review is underbaked to present a comprehensive overview of the function and structure of FAK. Additionally, the latest findings on the inhibitors and PROTAC degraders of FAK from the past three years, along with their optimization strategies and anticancer activities, were summarized, which might help to provide novel insights for the development of novel targeted FAK agents with promising anticancer potential and favorable pharmacological profiles.
Collapse
Affiliation(s)
- Xiao Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Na Li
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yun-He Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ji Wu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Qiu-Ge Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen-Zheng Huang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou, 450001, China.
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Di Vito A, Donato A, Bria J, Conforti F, La Torre D, Malara N, Donato G. Extracellular Matrix Structure and Interaction with Immune Cells in Adult Astrocytic Tumors. Cell Mol Neurobiol 2024; 44:54. [PMID: 38969910 PMCID: PMC11226480 DOI: 10.1007/s10571-024-01488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
The extracellular matrix (ECM) is a dynamic set of molecules produced by the cellular component of normal and pathological tissues of the embryo and adult. ECM acts as critical regulator in various biological processes such as differentiation, cell proliferation, angiogenesis, and immune control. The most frequent primary brain tumors are gliomas and by far the majority are adult astrocytic tumors (AATs). The prognosis for patients with these neoplasms is poor and the treatments modestly improves survival. In the literature, there is a fair number of studies concerning the composition of the ECM in AATs, while the number of studies relating the composition of the ECM with the immune regulation is smaller. Circulating ECM proteins have emerged as a promising biomarker that reflect the general immune landscape of tumor microenvironment and may represent a useful tool in assessing disease activity. Given the importance it can have for therapeutic and prognostic purposes, the aim of our study is to summarize the biological properties of ECM components and their effects on the tumor microenvironment and to provide an overview of the interactions between major ECM proteins and immune cells in AATs. As the field of immunotherapy in glioma is quickly expanding, we retain that current data together with future studies on ECM organization and functions in glioma will provide important insights into the tuning of immunotherapeutic approaches.
Collapse
Affiliation(s)
- Anna Di Vito
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy.
| | - Annalidia Donato
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Jessica Bria
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Domenico La Torre
- Unit of Neurosurgery, Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Natalia Malara
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Giuseppe Donato
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
6
|
Yang M, Xiang H, Luo G. Targeting focal adhesion kinase (FAK) for cancer therapy: FAK inhibitors, FAK-based dual-target inhibitors and PROTAC degraders. Biochem Pharmacol 2024; 224:116246. [PMID: 38685282 DOI: 10.1016/j.bcp.2024.116246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, plays an essential role in regulating cell proliferation, migration and invasion through both kinase-dependent enzymatic function and kinase-independent scaffolding function. The overexpression and activation of FAK is commonly observed in various cancers and some drug-resistant settings. Therefore, targeted disruption of FAK has been identified as an attractive strategy for cancer treatment. To date, numerous structurally diverse inhibitors targeting distinct domains of FAK have been developed, encompassing kinase domain inhibitors, FERM domain inhibitors, and FAT domain inhibitors, with several FAK inhibitors advanced to clinical trials. Moreover, given the critical role of FAK scaffolding function in signal transduction, FAK-targeted PROTACs have also been developed. Although no current FAK-targeted therapeutics have been approved for the market, the combination of FAK inhibitors with other anticancer drugs has shown considerable promise in the clinic. This review provides an overview of current drug discovery strategies targeting FAK, including the development of FAK inhibitors, FAK-based dual-target inhibitors and proteolysis-targeting chimeras (PROTACs) in both literature and patent applications. Accordingly, their design and optimization process, mechanisms of action and biological activities are discussed to offer insights into future directions of FAK-targeting drug discovery in cancer therapy.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
7
|
Mushtaq A, Wu P, Naseer MM. Recent drug design strategies and identification of key heterocyclic scaffolds for promising anticancer targets. Pharmacol Ther 2024; 254:108579. [PMID: 38160914 DOI: 10.1016/j.pharmthera.2023.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Cancer, a noncommunicable disease, is the leading cause of mortality worldwide and is anticipated to rise by 75% in the next two decades, reaching approximately 25 million cases. Traditional cancer treatments, such as radiotherapy and surgery, have shown limited success in reducing cancer incidence. As a result, the focus of cancer chemotherapy has switched to the development of novel small molecule antitumor agents as an alternate strategy for combating and managing cancer rates. Heterocyclic compounds are such agents that bind to specific residues in target proteins, inhibiting their function and potentially providing cancer treatment. This review focuses on privileged heterocyclic pharmacophores with potent activity against carbonic anhydrases and kinases, which are important anticancer targets. Evaluation of ongoing pre-clinical and clinical research of heterocyclic compounds with potential therapeutic value against a variety of malignancies as well as the provision of a concise summary of the role of heterocyclic scaffolds in various chemotherapy protocols have also been discussed. The main objective of the article is to highlight key heterocyclic scaffolds involved in recent anticancer drug design that demands further attention from the drug development community to find more effective and safer targeted small-molecule anticancer agents.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany.
| |
Collapse
|