1
|
Hassan AMA, Abubshait SA, Abdel-Haleem DR, El-Naggar AM, Hassaballah AI. Eco-sustainable Synthesis and Potential Efficiency of Some Novel N-containing Heterocyclic Derivatives as Insecticidal and Photosensitizing Agents Against Musca domestica L. Chem Biodivers 2024; 21:e202401650. [PMID: 39231387 DOI: 10.1002/cbdv.202401650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024]
Abstract
The rising application of conventional synthetic insecticides develops resistant populations of houseflies; therefore, using new chemical agents with different modes of action is essential to overcome this problem. The mechanical grinding technique was used as a green method, to synthesize the tested compounds because it is a more facile work-up and high-yield economy, simplicity and solvent-free than conventional thermal technique. Various methods were employed to synthesize new heterocycles containing anthracene (a photosensitizing agent) from chalcone 3, a building block material such as the preparation of the pyrazole derivatives 4-7, isoxazole derivative 8, pyrimidines 9-11, and oxirane derivative 12. The novel synthesized compounds were analyzed by FT-IR, 1H-NMR, 13C-NMR spectra, and elemental analysis. Herein, the toxicity of the anthracene derivatives was assessed against Musca domestica larvae and adults in different conditions to demonstrate the effect of various inserted moieties on the efficiency of tested compounds. Furthermore, the influence of sunlight on the toxicity of anthracene was studied in dark and sunlight tests against adult houseflies. Moreover, these compounds diminished the total protein and lipids contents while significantly influencing the antioxidant enzymes activities of M. domestica adults. Structure-activity relationships demonstrated the role of each moiety on the toxicity of compounds.
Collapse
Affiliation(s)
- A M A Hassan
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
| | - Samar A Abubshait
- Department of Chemistry, Collage of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 32441, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 32441, Dammam, Saudi Arabia
| | - Doaa R Abdel-Haleem
- Entomology Department, Faculty of Science, Ain Shams University, 11566, Cairo, Abbassia, Egypt
| | - Abeer M El-Naggar
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
| | - Aya I Hassaballah
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
| |
Collapse
|
2
|
Abbass EM, El-Rayyes A, Khalil Ali A, El-Farargy AF, Kozakiewicz-Piekarz A, Ramadan RM. Catalyzed syntheses of novel series of spiro thiazolidinone derivatives with nano Fe 2O 3: spectroscopic, X-ray, Hirshfeld surface, DFT, biological and docking evaluations. Sci Rep 2024; 14:18773. [PMID: 39138211 PMCID: PMC11322538 DOI: 10.1038/s41598-024-65282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/18/2024] [Indexed: 08/15/2024] Open
Abstract
Twelve spiro thiazolidinone compounds (A-L) were synthesized via either conventional thermal or ultrasonication techniques using Fe2O3 nanoparticles. The modification of the traditional procedure by using Fe2O3 nanoparticles led to enhancement of the yield of the desired candidates to 78-93% in approximately half reaction time compared with 58-79% without catalyst. The products were fully characterized using different analytical and spectroscopic techniques. The structure of the two derivatives 4-phenyl-1-thia-4-azaspirodecan-3-one (A) and 4-(p-tolyl)-1-thia-4-azaspirodecan-3-one (B) were also determined using single crystal X-ray diffraction and Hirshfeld surface analysis. The two compounds (A and B) were crystallized in the orthorhombic system with Pbca and P212121 space groups, respectively. In addition, the crystal packing of compounds revealed the formation of supramolecular array with a net of intermolecular hydrogen bonding interactions. The energy optimized geometries of some selected derivatives were performed by density functional theory (DFT/B3LYP). The reactivity descriptors were also calculated and correlated with their biological properties. All the reported compounds were screened for antimicrobial inhibitions. The two derivatives, F and J, exhibited the highest levels of bacterial inhibition with an inhibition zone of 10-17 mm. Also, the two derivatives, F and J, displayed the most potent fungal inhibition with an inhibition zone of 15-23 mm. Molecular docking investigations of some selected derivatives were performed using a B-DNA (PDB: 1BNA) as a macromolecular target. Structure and activity relationship of the reported compounds were correlated with the data of antimicrobial activities and the computed reactivity parameters.
Collapse
Affiliation(s)
- Eslam M Abbass
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Ali El-Rayyes
- Chemistry Department, College of Science, Northern Border University, 1321, Arar, Saudi Arabia
| | - Ali Khalil Ali
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed F El-Farargy
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Anna Kozakiewicz-Piekarz
- Department of Biomedical Chemistry and Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Ramadan M Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
3
|
El-Gamil DS, Zaky MY, Maximous PM, Sharaky M, El-Dessouki AM, Riad NM, Shaaban S, Abdel-Halim M, Al-Karmalawy AA. Exploring chromone-2-carboxamide derivatives for triple-negative breast cancer targeting EGFR, FGFR3, and VEGF pathways: Design, synthesis, and preclinical insights. Drug Dev Res 2024; 85:e22228. [PMID: 38952003 DOI: 10.1002/ddr.22228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/27/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
Chromone-based compounds have established cytotoxic, antiproliferative, antimetastatic, and antiangiogenic effects on various cancer cell types via modulating different molecular targets. Herein, 17 novel chromone-2-carboxamide derivatives were synthesized and evaluated for their in vitro anticancer activity against 15 human cancer cell lines. Among the tested cell lines, MDA-MB-231, the triple-negative breast cancer cell line, was found to be the most sensitive, where the N-(2-furylmethylene) (15) and the α-methylated N-benzyl (17) derivatives demonstrated the highest growth inhibition with GI50 values of 14.8 and 17.1 μM, respectively. In vitro mechanistic studies confirmed the significant roles of compounds 15 and 17 in the induction of apoptosis and suppression of EGFR, FGFR3, and VEGF protein levels in MDA-MB-231 cancer cells. Moreover, compound 15 exerted cell cycle arrest at both the G0-G1 and G2-M phases. The in vivo efficacy of compound 15 as an antitumor agent was further investigated in female mice bearing Solid Ehrlich Carcinoma. Notably, administration of compound 15 resulted in a marked decrease in both tumor weight and volume, accompanied by improvements in biochemical, hematological, histological, and immunohistochemical parameters that verified the repression of both angiogenesis and inflammation as additional Anticancer mechanisms. Moreover, the binding interactions of compounds 15 and 17 within the binding sites of all three target receptors (EGFR, FGFR3, and VEGF) were clearly illustrated using molecular docking.
Collapse
Affiliation(s)
- Dalia S El-Gamil
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mohamed Y Zaky
- Zoology Department, Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Patrick M Maximous
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Noura M Riad
- Department of Chemistry, School of Life and Medical Sciences, New Administrative Capital, University of Hertfordshire hosted by Global Academic Foundation, Cairo, Egypt
| | - Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Organic Chemistry Division, Department of Chemistry, College of Science, Mansoura University, Mansoura, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
4
|
Abdel-Motaal M, Aldakhili DA, Abo Elmaaty A, Sharaky M, Mourad MAE, Alzahrani AYA, Mohamed NA, Al-Karmalawy AA. Design and synthesis of novel tetrabromophthalimide derivatives as potential tubulin inhibitors endowed with apoptotic induction for cancer treatment. Drug Dev Res 2024; 85:e22197. [PMID: 38751223 DOI: 10.1002/ddr.22197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
Although various approaches exist for treating cancer, chemotherapy continues to hold a prominent role in the management of this disease. Besides, microtubules serve as a vital component of the cellular skeleton, playing a pivotal role in the process of cell division making it an attractive target for cancer treatment. Hence, the scope of this work was adapted to design and synthesize new anti-tubulin tetrabromophthalimide hybrids (3-17) with colchicine binding site (CBS) inhibitory potential. The conducted in vitro studies showed that compound 16 displayed the lowest IC50 values (11.46 µM) at the FaDu cancer cell lines, whereas compound 17 exhibited the lowest IC50 value (13.62 µM) at the PC3 cancer cell line. However, compound 7b exhibited the lowest IC50 value (11.45 µM) at the MDA-MB-468 cancer cell line. Moreover, compound 17 was observed to be the superior antitumor candidate against all three tested cancer cell lines (MDA-MB-468, PC3, and FaDu) with IC50 values of 17.22, 13.15, and 13.62 µM, respectively. In addition, compound 17 showed a well-established upregulation of apoptotic markers (Caspases 3, 7, 8, and 9, Bax, and P53). Moreover, compound 17 induced downregulation of the antiapoptotic markers (MMP2, MMP9, and BCL-2). Furthermore, the colchicine binding site inhibition assay showed that compounds 15a and 17 exhibited particularly significant inhibitory potentials, with IC50 values of 23.07 and 4.25 µM, respectively, compared to colchicine, which had an IC50 value of 3.89 µM. Additionally, cell cycle analysis was conducted, showing that compound 17 could prompt cell cycle arrest at both the G0-G1 and G2-M phases. On the other hand, a molecular docking approach was applied to investigate the binding interactions of the examined candidates compared to colchicine towards CBS of the β-tubulin subunit. Thus, the synthesized tetrabromophthalimide hybrids can be regarded as outstanding anticancer candidates with significant apoptotic activity.
Collapse
Affiliation(s)
- Marwa Abdel-Motaal
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
- Department of Chemistry, Organic Chemistry Division, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Dalal A Aldakhili
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October, Egypt
| | - Mai A E Mourad
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Abdullah Y A Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Assir, Saudi Arabia
| | - Nadia A Mohamed
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| |
Collapse
|
5
|
Eid NM, Al-Karmalawy AA, Eldebss TMA, Elhakim HKA. Investigating the Promising Anticancer Activity of Cetuximab and Fenbendazole Combination as Dual CBS and VEGFR-2 Inhibitors and Endowed with Apoptotic Potential. Chem Biodivers 2024; 21:e202302081. [PMID: 38318954 DOI: 10.1002/cbdv.202302081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/07/2024]
Abstract
In this work, the cytotoxicity of monoclonal antibody (Cetuximab, Ce) and Fenbendazole (Fen), as well as their combination therapy were tested with the MTT assay. On the other side, Ce, Fen, and a combination between them were subjected to a colchicine-tubulin binding test, which was conducted and compared to Colchicine as a reference standard. Besides, Ce, Fen, and the combination of them were tested against the VEGFR-2 target receptor, compared to Sorafenib as the standard medication. Moreover, the qRT-PCR technique was used to investigate the levels of apoptotic genes (p53 and Bax) and anti-apoptotic gene (Bcl-2) as well. Also, the effect of Ce, Fen, and the combination of them on the level of ROS was studied. Furthermore, the cell cycle analysis and Annexin V apoptosis assay were carried out for Ce, Fen, and a combination of them. In addition, the molecular docking studies were used to describe the molecular levels of interactions for both (Fen and colchicine) or (Fen and sorafenib) within the binding pockets of the colchicine binding site (CBS) and vascular endothelial growth factor-2 receptor (VEGFR-2), respectively.
Collapse
Affiliation(s)
- Norhan M Eid
- Biochemistry Division, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Taha M A Eldebss
- Chemistry Division, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Heba K A Elhakim
- Biochemistry Division, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|