1
|
Călinoiu LF, Odochean R, Martău GA, Mitrea L, Nemes SA, Ștefănescu BE, Vodnar DC. In situ fortification of cereal by-products with vitamin B12: An eco-sustainable approach for food fortification. Food Chem 2024; 460:140766. [PMID: 39126946 DOI: 10.1016/j.foodchem.2024.140766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Vitamin B12 deficiency poses significant health risks, especially among populations with limited access to animal-based foods. This study explores the utilisation of cereal bran by-products, wheat (WB) and oat bran (OB), as substrates for in situ vitamin B12 fortification through solid-state fermentation (SSF) using Propionibacterium freudenreichii. The impact of various precursors addition, including riboflavin, cobalt, nicotinamide and DMBI on vitamin B12 production, along with changes in microbial growth, chemical profiles, and vitamin B12 yields during fermentation was evaluated. Results showed that WB and OB possess favourable constituents for microbial growth and vitamin B12 synthesis. The substrates supplemented with riboflavin, cobalt, and DMBI demonstrated enhanced B12 production. In addition, pH levels are essential in microbial viability and cobalamin biosynthesis. Monosaccharides and organic acids play a crucial role, with maltose showing a strong positive association with B12 production in OB, while in WB, citric acid exhibits significant correlations with various factors.
Collapse
Affiliation(s)
- Lavinia Florina Călinoiu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania; Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Răzvan Odochean
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Gheorghe-Adrian Martău
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania; Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Laura Mitrea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania; Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Silvia Amalia Nemes
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Bianca-Eugenia Ștefănescu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania; Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania.
| |
Collapse
|
2
|
Osterman I, Samra H, Rousset F, Loseva E, Itkin M, Malitsky S, Yirmiya E, Millman A, Sorek R. Phages reconstitute NAD + to counter bacterial immunity. Nature 2024; 634:1160-1167. [PMID: 39322677 DOI: 10.1038/s41586-024-07986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
Bacteria defend against phage infection through a variety of antiphage defence systems1. Many defence systems were recently shown to deplete cellular nicotinamide adenine dinucleotide (NAD+) in response to infection, by cleaving NAD+ into ADP-ribose (ADPR) and nicotinamide2-7. It was demonstrated that NAD+ depletion during infection deprives the phage of this essential molecule and impedes phage replication. Here we show that a substantial fraction of phages possess enzymatic pathways allowing reconstitution of NAD+ from its degradation products in infected cells. We describe NAD+ reconstitution pathway 1 (NARP1), a two-step pathway in which one enzyme phosphorylates ADPR to generate ADPR pyrophosphate (ADPR-PP), and the second enzyme conjugates ADPR-PP and nicotinamide to generate NAD+. Phages encoding NARP1 can overcome a diverse set of defence systems, including Thoeris, DSR1, DSR2, SIR2-HerA and SEFIR, all of which deplete NAD+ as part of their defensive mechanism. Phylogenetic analyses show that NARP1 is primarily encoded on phage genomes, suggesting a phage-specific function in countering bacterial defences. A second pathway, NARP2, allows phages to overcome bacterial defences by building NAD+ using metabolites different from ADPR-PP. Our findings reveal a unique immune evasion strategy in which viruses rebuild molecules depleted by defence systems, thus overcoming host immunity.
Collapse
Affiliation(s)
- Ilya Osterman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Hadar Samra
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Francois Rousset
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Loseva
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Chen L, Qin X, Wang G, Teng M, Zheng Y, Yang F, Du H, Wang L, Xu Y. Oxygen influences spatial heterogeneity and microbial succession dynamics during Baijiu stacking process. BIORESOURCE TECHNOLOGY 2024; 403:130854. [PMID: 38761866 DOI: 10.1016/j.biortech.2024.130854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
The spontaneous solid-state stacking process (SSSP) of Baijiu is an environmentally friendly and cost-effective process for enriching and assembling environmental microorganisms to guarantee the subsequent fermentation efficiency. In this study, how SSSP create spatial heterogeneity of stacking piles were found through spatiotemporal sampling. The degree of difficulty in oxygen exchange categorizes the stacking pile into depleted (≤4%), transitional (4 %-17 %), and enriched (≥17 %) oxygen-defined layers. This results in variation in succession rates (Vdepleted > Vtransitional > Venriched), which accelerates spatial heterogeneity during SSSP. As a dominant species (65 %-99 %) in depleted and transitional layers, Acetilactobacillus jinshanensis can rapidly reduce oxygen disturbance by upregulating poxL and catE, that sustains spatial heterogeneity. The findings demonstrated the value of oxygen control in shaping spatial heterogeneity during SSSP processes, which can create specific functional microbiome. Adding spatial heterogeneity management will help achieve more precise control of such solid-state fermentation systems.
Collapse
Affiliation(s)
- Liangqiang Chen
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China; Moutai Institute, Renhuai 564500, Guizhou, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China
| | - Xing Qin
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China
| | - Guozheng Wang
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China
| | - Mengjing Teng
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China
| | - Yuxi Zheng
- Moutai Institute, Renhuai 564500, Guizhou, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China
| | - Fan Yang
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Li Wang
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China.
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
4
|
Jeje O, Otun S, Aloke C, Achilonu I. Exploring NAD + metabolism and NNAT: Insights from structure, function, and computational modeling. Biochimie 2024; 220:84-98. [PMID: 38182101 DOI: 10.1016/j.biochi.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Nicotinamide Adenine Dinucleotide (NAD+), a coenzyme, is ubiquitously distributed and serves crucial functions in diverse biological processes, encompassing redox reactions, energy metabolism, and cellular signalling. This review article explores the intricate realm of NAD + metabolism, with a particular emphasis on the complex relationship between its structure, function, and the pivotal enzyme, Nicotinate Nucleotide Adenylyltransferase (NNAT), also known as nicotinate mononucleotide adenylyltransferase (NaMNAT), in the process of its biosynthesis. Our findings indicate that NAD + biosynthesis in humans and bacteria occurs via the same de novo synthesis route and the pyridine ring salvage pathway. Maintaining NAD homeostasis in bacteria is imperative, as most bacterial species cannot get NAD+ from their surroundings. However, due to lower sequence identity and structurally distant relationship of bacteria, including E. faecium and K. pneumonia, to its human counterpart, inhibiting NNAT, an indispensable enzyme implicated in NAD + biosynthesis, is a viable alternative in curtailing infections orchestrated by E. faecium and K. pneumonia. By merging empirical and computational discoveries and connecting the intricate NAD + metabolism network with NNAT's crucial role, it becomes clear that the synergistic effect of these insights may lead to a more profound understanding of the coenzyme's function and its potential applications in the fields of therapeutics and biotechnology.
Collapse
Affiliation(s)
- Olamide Jeje
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| | - Sarah Otun
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa.
| | - Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa; Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Nigeria
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| |
Collapse
|