1
|
Seal S, Chakraborty T, Polley S, Paul D, Banerjee N, Sinha D, Dutta A, Chatterjee S, Sau K, Ghosh Dastidar S, Sau S. Modeling and monitoring the effects of three partly conserved Ile residues in the dimerization domain of a Mip-like virulence factor from Escherichia coli. J Biomol Struct Dyn 2023:1-14. [PMID: 37902555 DOI: 10.1080/07391102.2023.2274978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/18/2023] [Indexed: 10/31/2023]
Abstract
FKBP22, an Escherichia coli-made peptidyl-prolyl cis-trans isomerase, has shown considerable homology with Mip-like virulence factors. While the C-terminal domain of this enzyme is used for executing catalytic function and binding inhibitor, the N-terminal domain is employed for its dimerization. To precisely determine the underlying factors of FKBP22 dimerization, its structural model, developed using a suitable template, was carefully inspected. The data show that the dimeric FKBP22, like dimeric Mip proteins, has a V-like shape. Further, it dimerizes using 40 amino acid residues including Ile 9, Ile 17, Ile 42, and Ile 65. All of the above Ile residues except Ile 9 are partly conserved in the Mip-like proteins. To confirm the roles of the partly conserved Ile residues, three FKBP22 mutants, constructed by substituting them with an Ala residue, were studied as well. The results together indicate that Ile 65 has little role in maintaining the dimeric state or enzymatic activity of FKBP22. Conversely, both Ile 17 and Ile 42 are essential for preserving the structure, enzymatic activity, and dimerization ability of FKBP22. Ile 42 in particular looks more essential to FKBP22. However, none of these two Ile residues is required for binding the cognate inhibitor. Additional computational studies also indicated the change of V-shape and the dimeric state of FKBP22 due to the Ala substitution at position 42. The ways Ile 17 and Ile 42 protect the structure, function, and dimerization of FKBP22 have been discussed at length.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soham Seal
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | | | - Soumitra Polley
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Debarati Paul
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | | | - Debasmita Sinha
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Anindya Dutta
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | | | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, Haldia, India
| | | | - Subrata Sau
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
2
|
Seal S, Banerjee N, Mahato R, Kundu T, Sinha D, Chakraborty T, Sinha D, Sau K, Chatterjee S, Sau S. Serine 106 preserves the tertiary structure, function, and stability of a cyclophilin from Staphylococcus aureus. J Biomol Struct Dyn 2023; 41:1479-1494. [PMID: 34967275 DOI: 10.1080/07391102.2021.2021992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
SaCyp, a staphylococcal cyclophilin involved in both protein folding and pathogenesis, has a Ser residue at position 106 and a Trp residue at position 136. While Ser 106 of SaCyp aligned with a cyclosporin A (CsA) binding Ala residue, its Trp 136 aligned with a Trp or a Phe residue of most other cyclophilins. To demonstrate the exact roles of Ser 106 and Trp 136 in SaCyp, we have elaborately studied rCyp[S106A] and rCyp[W136A], two-point mutants of a recombinant SaCyp (rCyp) harboring an Ala substitution at positions 106 and 136, respectively. Of the mutants, rCyp[W136A] showed the rCyp-like CsA binding affinity and peptidyl-prolyl cis-trans isomerase (PPIase) activity. Conversely, the PPIase activity, CsA binding affinity, stability, tertiary structure, surface hydrophobicity, and Trp accessibility of rCyp[S106A] notably differed from those of rCyp. The computational experiments also reveal that the structure, dimension, and fluctuation of SaCyp are not identical to those of SaCyp[S106A]. Furthermore, Ser at position 106 of SaCyp, compared to Ala at the same position, formed a higher number of non-covalent bonds with CsA. Collectively, Ser 106 is an indispensable residue for SaCyp that keeps its tertiary structure, function, and stability intact.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soham Seal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| | - Rohit Mahato
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Tanmoy Kundu
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Debabrata Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | | | - Debasmita Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | | | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
3
|
Chakraborty T, Polley S, Sinha D, Seal S, Sinha D, Mitra SK, Hazra J, Sau K, Pal M, Sau S. Structurally distinct unfolding intermediates formed from a staphylococcal capsule-producing enzyme retained NADPH binding activity. J Biomol Struct Dyn 2021; 40:9126-9143. [PMID: 33977860 DOI: 10.1080/07391102.2021.1924269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CapF, a capsule-producing enzyme expressed by Staphylococcus aureus, binds NADPH and exists as a dimer in the aqueous solution. Many other capsule-producing virulent bacteria also express CapF orthologs. To understand the folding-unfolding mechanism of S. aureus CapF, herein a recombinant CapF (rCapF) was individually investigated using urea and guanidine hydrochloride (GdnCl). Unfolding of rCapF by both the denaturants was reversible but proceeded via the synthesis of a different number of intermediates. While two dimeric intermediates (rCapF4 and rCapF5) were formed at 0.5 M and 1.5 M GdnCl, three dimeric intermediates (rCapF1, rCapF2, and rCapF3) were produced at 1 M, 2 M, and 3 M urea, respectively. rCapF5 showed 3.6 fold less NADPH binding activity, whereas other intermediates retained full NADPH binding activity. Compared to rCapF, all of the intermediates (except rCapF3) had a compressed shape. Conversely, rCapF3 possessed a native protein-like shape. The maximum shape loss was in rCapF4 though its secondary structure remained unperturbed. Additionally, the tertiary structure and hydrophobic surface area of the intermediates neither matched with each other nor with those of the native rCapF. Of the four Trp residues in rCapF, one or more Trp residues in the intermediates may have higher solvent accessibility. Using sequence alignment and a tertiary structural model of CapF, we have demonstrated that the region around Trp 137 of CapF may be most sensitive to unfolding, whereas the NADPH binding motif carrying region at the N-terminal end of this protein may be resistant to unfolding, particularly at the low denaturant concentrations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Soumitra Polley
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Debabrata Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Soham Seal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Debasmita Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Sudip K Mitra
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Joyita Hazra
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Sinha D, Sinha D, Dutta A, Chakraborty T, Mondal R, Seal S, Poddar A, Chatterjee S, Sau S. Alternative Sigma Factor of Staphylococcus aureus Interacts with the Cognate Antisigma Factor Primarily Using Its Domain 3. Biochemistry 2021; 60:135-151. [PMID: 33406357 DOI: 10.1021/acs.biochem.0c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
σB, an alternative sigma factor, is usually employed to tackle the general stress response in Staphylococcus aureus and other Gram-positive bacteria. This protein, involved in S. aureus-mediated pathogenesis, is typically blocked by RsbW, an antisigma factor having serine kinase activity. σB, a σ70-like sigma factor, harbors three conserved domains designated σB2, σB3, and σB4. To better understand the interaction between RsbW and σB or its domains, we have studied their recombinant forms, rRsbW, rσB, rσB2, rσB3, and rσB4, using different probes. The results show that none of the rσB domains, unlike rσB, showed binding to a cognate DNA in the presence of a core RNA polymerase. However, both rσB2 and rσB3, like rσB, interacted with rRsbW, and the order of their rRsbW binding affinity looks like rσB > rσB3 > rσB2. Furthermore, the reaction between rRsbW and rσB or rσB3 was exothermic and occurred spontaneously. rRsbW and rσB3 also associate with each other at a stoichiometry of 2:1, and different types of noncovalent bonds might be responsible for their interaction. A structural model of the RsbW-σB3 complex that has supported our experimental results indicated the binding of rσB3 at the putative dimeric interface of RsbW. A genetic study shows that the tentative dimer-forming region of RsbW is crucial for preserving its rσB binding ability, serine kinase activity, and dimerization ability. Additionally, a urea-induced equilibrium unfolding study indicated a notable thermodynamic stabilization of σB3 in the presence of RsbW. Possible implications of the stabilization data in drug discovery were discussed at length.
Collapse
Affiliation(s)
- Debabrata Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal 700054, India
| | - Debasmita Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal 700054, India
| | - Anindya Dutta
- Department of Biophysics, Bose Institute, Kolkata, West Bengal 700054, India
| | - Tushar Chakraborty
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal 700054, India
| | - Rajkrishna Mondal
- Department of Biotechnology, Nagaland University, Dimapur, Nagaland 797112, India
| | - Soham Seal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal 700054, India
| | - Asim Poddar
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal 700054, India
| | | | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal 700054, India
| |
Collapse
|
5
|
Sinha D, Sinha D, Banerjee N, Rai P, Seal S, Chakraborty T, Chatterjee S, Sau S. A conserved arginine residue in a staphylococcal anti-sigma factor is required to preserve its kinase activity, structure, and stability. J Biomol Struct Dyn 2020; 40:4972-4986. [PMID: 33356973 DOI: 10.1080/07391102.2020.1864475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
RsbW, σB, and RsbV, encoded by Staphylococcus aureus and related bacteria, act as an anti-sigma factor, an sigma factor, and an anti-anti-sigma factor, respectively. The interaction between RsbW and σB blocks the transcription initiation activity of the latter protein. RsbW also functions as a serine kinase and phosphorylates RsbV in the presence of ATP. Our modeling study indicates that the RsbW-RsbV complex is stabilized by twenty-four intermolecular non-covalent bonds. Of the bond-forming RsbW residues, Arg 23, and Glu 49 are conserved residues. To understand the roles of Arg 23 in RsbW, rRsbW[R23A], a recombinant S. aureus RsbW (rRsbW) harboring Arg to Ala change at position 23, was investigated using various probes. The results reveal that rRsbW[R23A], like rRsbW, exists as the dimers in the aqueous solution. However, rRsbW[R23A], unlike rRsbW, neither interacted with a chimeric RsbV (rRsbV) nor formed the phosphorylated rRsbV in the presence of ATP. Furthermore, the tertiary structure and hydrophobic surface area of rRsbW[R23A] matched little with those of rRsbW. Conversely, both rRsbW[R23A] and rRsbW showed interaction with a recombinant σB (rσB). rRsbW and rRsbW[R23A] were also unfolded via the formation of at least one intermediate in the presence of urea. However, the thermodynamic stability of rRsbW significantly differed from that of rRsbW[R23A]. Our molecular dynamics (MD) simulation study also reveals the substantial change of structure, dimension, and stability of RsbW due to the above mutation. The ways side chain of critical Arg 23 contributes to maintaining the tertiary structure, and stability of RsbW was elaborately discussed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debasmita Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Debabrata Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| | - Priya Rai
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| | - Soham Seal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | | | | | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
6
|
Sinha D, Chakraborty T, Sinha D, Poddar A, Chattopadhyaya R, Sau S. Understanding the structure, stability, and anti-sigma factor-binding thermodynamics of an anti-anti-sigma factor from Staphylococcus aureus. J Biomol Struct Dyn 2020; 39:6539-6552. [PMID: 32755297 DOI: 10.1080/07391102.2020.1801511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Debabrata Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | | | - Debasmita Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Asim Poddar
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | | | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
7
|
Identification of Substrates of Cytoplasmic Peptidyl-Prolyl Cis/Trans Isomerases and Their Collective Essentiality in Escherichia Coli. Int J Mol Sci 2020; 21:ijms21124212. [PMID: 32545723 PMCID: PMC7353009 DOI: 10.3390/ijms21124212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022] Open
Abstract
Protein folding often requires molecular chaperones and folding catalysts, such as peptidyl-prolyl cis/trans isomerases (PPIs). The Escherichia coli cytoplasm contains six well-known PPIs, although a requirement of their PPIase activity, the identity of their substrates and relative enzymatic contribution is unknown. Thus, strains lacking all periplasmic and one of the cytoplasmic PPIs were constructed. Measurement of their PPIase activity revealed that PpiB is the major source of PPIase activity in the cytoplasm. Furthermore, viable Δ6ppi strains could be constructed only on minimal medium in the temperature range of 30-37 °C, but not on rich medium. To address the molecular basis of essentiality of PPIs, proteins that aggregate in their absence were identified. Next, wild-type and putative active site variants of FkpB, FklB, PpiB and PpiC were purified and in pull-down experiments substrates specific to each of these PPIs identified, revealing an overlap of some substrates. Substrates of PpiC were validated by immunoprecipitations using extracts from wild-type and PpiC-H81A strains carrying a 3xFLAG-tag appended to the C-terminal end of the ppiC gene on the chromosome. Using isothermal titration calorimetry, RpoE, RseA, S2, and AhpC were established as FkpB substrates and PpiC's PPIase activity was shown to be required for interaction with AhpC.
Collapse
|
8
|
Seal S, Chowdhury N, Biswas R, Chakraborty T, Sinha D, Bagchi A, Sau S. Removal of an atypical region from a staphylococcal cyclophilin affects its structure, function, stability, and shape. Int J Biol Macromol 2020; 151:1287-1298. [DOI: 10.1016/j.ijbiomac.2019.10.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
|
9
|
Seal S, Polley S, Sau S. A staphylococcal cyclophilin carries a single domain and unfolds via the formation of an intermediate that preserves cyclosporin A binding activity. PLoS One 2019; 14:e0210771. [PMID: 30925148 PMCID: PMC6440624 DOI: 10.1371/journal.pone.0210771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/18/2019] [Indexed: 12/22/2022] Open
Abstract
Cyclophilin (Cyp), a peptidyl-prolyl cis-trans isomerase (PPIase), acts as a virulence factor in many bacteria including Staphylococcus aureus. The enzymatic activity of Cyp is inhibited by cyclosporin A (CsA), an immunosuppressive drug. To precisely determine the unfolding mechanism and the domain structure of Cyp, we have investigated a chimeric S. aureus Cyp (rCyp) using various probes. Our limited proteolysis and the consequent analysis of the proteolytic fragments indicate that rCyp is composed of one domain with a short flexible tail at the C-terminal end. We also show that the urea-induced unfolding of both rCyp and rCyp-CsA is completely reversible and proceeds via the synthesis of at least one stable intermediate. Both the secondary structure and the tertiary structure of each intermediate appears very similar to those of the corresponding native protein. Conversely, the hydrophobic surface areas of the intermediates are comparatively less. Further analyses reveal no loss of CsA binding activity in rCyp intermediate. The thermodynamic stability of rCyp was also significantly increased in the presence of CsA, recommending that this protein could be employed to screen new CsA derivatives in the future.
Collapse
Affiliation(s)
- Soham Seal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Soumitra Polley
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
10
|
Polley S, Chakravarty D, Chakrabarti G, Sau S. Determining the roles of a conserved tyrosine residue in a Mip-like peptidyl-prolyl cis–trans isomerase. Int J Biol Macromol 2016; 87:273-80. [DOI: 10.1016/j.ijbiomac.2016.02.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 11/16/2022]
|