1
|
Gholipour Z, Imani Fooladi AA, Parivar K. Targeted Therapy with a Novel Superantigen-based Fusion Protein Against Interleukin-13 Receptor α2-overexpressing Tumor Cells: An In-silico Study. IRANIAN JOURNAL OF PATHOLOGY 2024; 19:193-204. [PMID: 39118800 PMCID: PMC11304462 DOI: 10.30699/ijp.2024.2014231.3200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/26/2023] [Indexed: 08/10/2024]
Abstract
Background & Objective Superantigens are bacterial toxins that induce a massive immune response in the host. Superantigen staphylococcal enterotoxin B (SEB) can form a ternary complex with its receptors, MHC class II (MHCII) and TCR, and can be used in tumor-targeting therapy, particularly when cooperating with a specific vector. In this study, SEB was fused to interleukin-13 (IL13), which forms a complex with IL13 receptor α2 (IL13Rα2) overexpressed in glioblastoma multiforme (GBM) cells for therapeutic goals. Methods We designed four fusion proteins based on the arrangement of SEB (N- or C-terminal domain) and provided a flexible inter-domain linker (no or yes), resulting in the formation of SEB-IL13, SEB-L-IL13, IL13-SEB, and IL13-L-SEB, respectively. These fusion proteins were then evaluated for their various physicochemical properties and structural characteristics. Bioinformatics tools were employed to predict, refine, and validate the three-dimensional structure of the fusion proteins. In addition, the fusion proteins were docked with IL13Rα2, MHCII, and TCR receptors through the HADDOCK 2.4 server. The candidate fusion protein was subjected to molecular dynamics simulation. Results There were differences among the designed fusion proteins. The model with the N-terminal domain of IL13 and containing an inter-domain linker (IL13-L-SEB) was stable and had a long half-life. The docking analysis revealed that the IL13-L-SEB fusion protein had a higher binding affinity to the IL13Rα2, MHCII, and TCR receptors. Finally, using molecular dynamics simulation through iMODS, acceptable results were obtained for the IL13-L-SEB docked complexes. Conclusion The results suggest IL13-L-SEB is a promising novel fusion protein for cancer therapeutic application.
Collapse
Affiliation(s)
- Zahra Gholipour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Freda I, Exertier C, Barile A, Chaves-Sanjuan A, Vega M, Isupov M, Harmer N, Gugole E, Swuec P, Bolognesi M, Scipioni A, Savino C, Di Salvo M, Contestabile R, Vallone B, Tramonti A, Montemiglio L. Structural insights into the DNA recognition mechanism by the bacterial transcription factor PdxR. Nucleic Acids Res 2023; 51:8237-8254. [PMID: 37378428 PMCID: PMC10450172 DOI: 10.1093/nar/gkad552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
Specificity in protein-DNA recognition arises from the synergy of several factors that stem from the structural and chemical signatures encoded within the targeted DNA molecule. Here, we deciphered the nature of the interactions driving DNA recognition and binding by the bacterial transcription factor PdxR, a member of the MocR family responsible for the regulation of pyridoxal 5'-phosphate (PLP) biosynthesis. Single particle cryo-EM performed on the PLP-PdxR bound to its target DNA enabled the isolation of three conformers of the complex, which may be considered as snapshots of the binding process. Moreover, the resolution of an apo-PdxR crystallographic structure provided a detailed description of the transition of the effector domain to the holo-PdxR form triggered by the binding of the PLP effector molecule. Binding analyses of mutated DNA sequences using both wild type and PdxR variants revealed a central role of electrostatic interactions and of the intrinsic asymmetric bending of the DNA in allosterically guiding the holo-PdxR-DNA recognition process, from the first encounter through the fully bound state. Our results detail the structure and dynamics of the PdxR-DNA complex, clarifying the mechanism governing the DNA-binding mode of the holo-PdxR and the regulation features of the MocR family of transcription factors.
Collapse
Affiliation(s)
- Ida Freda
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza, University of Rome, Rome 00185, Italy
| | - Cécile Exertier
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Anna Barile
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Antonio Chaves-Sanjuan
- Department of Biosciences, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi and NOLIMITS, University of Milano, Milano 20133, Italy
| | - Mirella Vivoli Vega
- School of Biochemistry, University of Bristol, University Walk, BS8 1TD Bristol, UK
| | - Michail N Isupov
- Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Nicholas J Harmer
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Elena Gugole
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Paolo Swuec
- Cryo-Electron Microscopy Core Facility, Human Technopole, Milano 20157, Italy
| | - Martino Bolognesi
- Department of Biosciences, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi and NOLIMITS, University of Milano, Milano 20133, Italy
| | - Anita Scipioni
- Department of Chemistry, Sapienza, University of Rome, Rome 00185, Italy
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Martino Luigi Di Salvo
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza, University of Rome, Rome 00185, Italy
| | - Roberto Contestabile
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza, University of Rome, Rome 00185, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza, University of Rome, Rome 00185, Italy
| | - Beatrice Vallone
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza, University of Rome, Rome 00185, Italy
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | | |
Collapse
|
3
|
Sharma A, Balda S, Capalash N, Sharma P. Engineering multifunctional enzymes for agro-biomass utilization. BIORESOURCE TECHNOLOGY 2022; 347:126706. [PMID: 35033642 DOI: 10.1016/j.biortech.2022.126706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulosic biomass is a plentiful renewable resource that can be converted into a wide range of high-value-added industrial products. However, the complexity of its structural integrity is one of the major constraints and requires combinations of different fibrolytic enzymes for the cost-effective, industrially and environmentally feasible transformation. An interesting approach is constructing multifunctional enzymes, either in a single polypeptide or by joining multiple domains with linkers and performing diverse reactions simultaneously, in a single host. The production of such chimera proteins multiplies the advantages of different enzymatic reactions in a single setup, in lesser time, at lower production cost and with desirable and improved catalytic activities. This review embodies the various domain-tailoring and extracellular secretion strategies, possible solutions to their challenges, and efforts to experimentally connect different catalytic activities in a single host, as well as their applications.
Collapse
Affiliation(s)
- Aarjoo Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjeev Balda
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
4
|
Frezzini M, Narzi D, Sciolari AM, Guidoni L, Pascarella S. Molecular dynamics of an asymmetric form of GabR, a bacterial transcriptional regulator. Biophys Chem 2020; 262:106380. [PMID: 32413777 DOI: 10.1016/j.bpc.2020.106380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/20/2023]
Abstract
GabR is a bacterial transcription regulator with a dimeric structure in which each subunit includes a wHTH (winged Helix-Turn-Helix) domain connected through a peptide linker to a large C-terminal domain folded as the enzyme aspartate aminotransferase (AAT). In Bacillus subtilis, GabR activates the genes involved in the metabolism of γ-amino butyric acid (GABA) upon formation of a PLP-GABA adduct. Recently, the crystallographic structure of an asymmetric form of GabR has been solved. This form (semi-holo) has one active site binding PLP as internal aldimine and the other the PLP-GABA complex. This work reports a molecular dynamics (MD) study aimed at understanding the characteristics of the asymmetric GabR form and compare them to the dynamics properties of previously studied symmetric holo (internal PLP aldimine at both active sites) and holo-GABA (containing PLP-GABA adducts) GabRs. Standard molecular dynamics and data analysis techniques have been used. The results indicate a remarkable asymmetry in the mobility and interactions of the different structural portions of the semi-holo GabR and of a few residues at the active site. The pattern is different from that observed in the other symmetrical GabR forms. The asymmetric perturbation of the active site residues may suggest the existence of a form of allosteric interference between the two active sites.
Collapse
Affiliation(s)
- Mario Frezzini
- Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Daniele Narzi
- Department of Physics and Chemistry Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | | | - Leonardo Guidoni
- Department of Physics and Chemistry Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Stefano Pascarella
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
5
|
Frezzini M, Guidoni L, Pascarella S. Conformational transitions induced by γ-amino butyrate binding in GabR, a bacterial transcriptional regulator. Sci Rep 2019; 9:19319. [PMID: 31848410 PMCID: PMC6917764 DOI: 10.1038/s41598-019-55581-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/20/2019] [Indexed: 11/09/2022] Open
Abstract
GabR from Bacillus subtilis is a transcriptional regulator of the MocR subfamily of GntR regulators. The MocR architecture is characterized by the presence of an N-terminal winged-Helix-Turn-Helix domain and a C-terminal domain folded as the pyridoxal 5′-phosphate (PLP) dependent aspartate aminotransferase (AAT). The two domains are linked by a peptide bridge. GabR activates transcription of genes involved in γ-amino butyrate (GABA) degradation upon binding of PLP and GABA. This work is aimed at contributing to the understanding of the molecular mechanism underlying the GabR transcription activation upon GABA binding. To this purpose, the structure of the entire GabR dimer with GABA external aldimine (holo-GABA) has been reconstructed using available crystallographic data. The structure of the apo (without any ligand) and holo (with PLP) GabR forms have been derived from the holo-GABA. An extensive 1 μs comparative molecular dynamics (MD) has been applied to the three forms. Results showed that the presence of GABA external aldimine stiffens the GabR, stabilizes the AAT domain in the closed form and couples the AAT and HTH domains dynamics. Apo and holo GabR appear more flexible especially at the level of the HTH and linker portions and small AAT subdomain.
Collapse
Affiliation(s)
- Mario Frezzini
- Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, 67100, L'Aquila, Italy
| | - Leonardo Guidoni
- Department of Physics and Chemistry Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Stefano Pascarella
- Department of Biochemical Sciences "A Rossi Fanelli", Sapienza, University of Rome, 00185, Rome, Italy.
| |
Collapse
|
6
|
Pascarella S. Computational classification of MocR transcriptional regulators into subgroups as a support for experimental and functional characterization. Bioinformation 2019; 15:151-159. [PMID: 31435161 PMCID: PMC6677901 DOI: 10.6026/97320630015151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/03/2019] [Indexed: 11/23/2022] Open
Abstract
MocR bacterial transcriptional regulators are a subfamily within the GntR family. The MocR proteins possess an N-terminal domain containing the winged Helix-Turn-Helix (wHTH) motif and a C-terminal domain whose architecture is homologous to the fold type-I pyridoxal 5'-phosphate (PLP) dependent enzymes and whose archetypical protein is aspartate aminotransferase (AAT). The ancestor of the fold type-I PLP dependent super-family is considered one of the earliest enzymes. The members of this super-family are the product of evolution which resulted in a diversified protein population able to catalyze a set of reactions on substrates often containing amino groups. The MocR regulators are activators or repressors of gene control within many metabolic pathways often involving PLP enzymes. This diversity implies that MocR specifically responds to different classes of effector molecules. Therefore, it is of interest to compare the AAT domains of MocR from six bacteria phyla. Multi dimensional scaling and cluster analyses suggested that at least three subgroups exist within the population that reflects functional specialization rather than taxonomic origin. The AAT-domains of the three clusters display variable degree of similarity to different fold type-I PLP enzyme families. The results support the hypothesis that independent fusion events generated at least three different MocR subgroups.
Collapse
Affiliation(s)
- Stefano Pascarella
- Structural bioinformatics and Molecular modelling Lab;Dipartimento di Scienze biochimiche;Sapienza Universita di Roma;00185 Roma,Italy
| |
Collapse
|
7
|
Tramonti A, Nardella C, di Salvo ML, Pascarella S, Contestabile R. The MocR-like transcription factors: pyridoxal 5'-phosphate-dependent regulators of bacterial metabolism. FEBS J 2018; 285:3925-3944. [PMID: 29974999 DOI: 10.1111/febs.14599] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
Abstract
Many biological functions played by current proteins were not created by evolution from scratch, rather they were obtained combining already available protein scaffolds. This is the case of MocR-like bacterial transcription factors (MocR-TFs), a subclass of GntR transcription regulators, whose structure is the outcome of the fusion between DNA-binding proteins and pyridoxal 5'-phosphate (PLP)-dependent enzymes. The resultant chimeras can count on the properties of both protein classes, i.e. the capability to recognize specific DNA sequences and to bind PLP and amino-compounds; it is the modulation of such binding properties to confer to MocR-TFs chimeras the ability to interact with effector molecules and DNA so as to regulate transcription. MocR-TFs control different metabolic processes involving vitamin B6 and amino acids, which are canonical ligands of PLP-dependent enzymes. However, MocR-TFs are also implicated in the metabolism of compounds that are not substrates of PLP-dependent enzymes, such as rhizopine and ectoine. Genomic analyses show that MocR-TFs are widespread among eubacteria, implying an essential role in their metabolism and highlighting the scarcity of our knowledge on these important players in microbial metabolism. Although MocR-TFs have been discovered 15 years ago, the research activity on these transcriptional regulators has only recently intensified, producing a wealth of information that needs to be brought back to general principles. This is the main task of this review, which reports and analyses the available information concerning MocR-TFs functional role, structural features, interaction with effector molecules and the characteristics of DNA transcriptional factor-binding sites of MocR-based regulatory systems.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy.,Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Caterina Nardella
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Martino L di Salvo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| |
Collapse
|
8
|
Milano T, Gulzar A, Narzi D, Guidoni L, Pascarella S. Molecular dynamics simulation unveils the conformational flexibility of the interdomain linker in the bacterial transcriptional regulator GabR from Bacillus subtilis bound to pyridoxal 5'-phosphate. PLoS One 2017; 12:e0189270. [PMID: 29253008 PMCID: PMC5734734 DOI: 10.1371/journal.pone.0189270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022] Open
Abstract
GabR from Bacillus subtilis is a transcriptional regulator belonging to the MocR subfamily of the GntR regulators. The structure of the MocR regulators is characterized by the presence of two domains: i) a N-terminal domain, about 60 residue long, possessing the winged-Helix-Turn-Helix (wHTH) architecture with DNA recognition and binding capability; ii) a C-terminal domain (about 350 residue) folded as the pyridoxal 5'-phosphate (PLP) dependent aspartate aminotransferase (AAT) with dimerization and effector binding functions. The two domains are linked to each other by a peptide bridge. Although structural and functional characterization of MocRs is proceeding at a fast pace, virtually nothing is know about the molecular changes induced by the effector binding and on how these modifications influence the properties of the regulator. An extensive molecular dynamics simulation on the crystallographic structure of the homodimeric B. subtilis GabR has been undertaken with the aim to envisage the role and the importance of conformational flexibility in the action of GabR. Molecular dynamics has been calculated for the apo (without PLP) and holo (with PLP bound) forms of the GabR. A comparison between the molecular dynamics trajectories calculated for the two GabR forms suggested that one of the wHTH domain detaches from the AAT-like domain in the GabR PLP-bound form. The most evident conformational change in the holo PLP-bound form is represented by the rotation and the subsequent detachment from the subunit surface of one of the wHTH domains. The movement is mediated by a rearrangement of the linker connecting the AAT domain possibly triggered by the presence of the negative charge of the PLP cofactor. This is the second most significant conformational modification. The C-terminal section of the linker docks into the "active site" pocket and establish stabilizing contacts consisting of hydrogen-bonds, salt-bridges and hydrophobic interactions.
Collapse
Affiliation(s)
- Teresa Milano
- Dipartimento di Scienze biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Italy
| | - Adnan Gulzar
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, L’Aquila, Italy
| | - Daniele Narzi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, L’Aquila, Italy
| | - Leonardo Guidoni
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, L’Aquila, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, Italy
| |
Collapse
|
9
|
A Comprehensive Computational Analysis of Mycobacterium Genomes Pinpoints the Genes Co-occurring with YczE, a Membrane Protein Coding Gene Under the Putative Control of a MocR, and Predicts its Function. Interdiscip Sci 2017; 10:111-125. [PMID: 29098594 DOI: 10.1007/s12539-017-0266-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 09/08/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
Abstract
Bacterial proteins belonging to the YczE family are predicted to be membrane proteins of yet unknown function. In many bacterial species, the yczE gene coding for the YczE protein is divergently transcribed with respect to an adjacent transcriptional regulator of the MocR family. According to in silico predictions, proteins named YczR are supposed to regulate the expression of yczE genes. These regulators linked to the yczE genes are predicted to constitute a subfamily within the MocR family. To put forward hypotheses amenable to experimental testing about the possible function of the YczE proteins, a phylogenetic profile strategy was applied. This strategy consists in searching for those genes that, within a set of genomes, co-occur exclusively with a certain gene of interest. Co-occurrence can be suggestive of a functional link. A set of 30 mycobacterial complete proteomes were collected. Of these, only 16 contained YczE proteins. Interestingly, in all cases each yczE gene was divergently transcribed with respect to a yczR gene. Two orthology clustering procedures were applied to find proteins co-occurring exclusively with the YczE proteins. The reported results suggest that YczE may be involved in the membrane translocation and metabolism of sulfur-containing compounds mostly in rapidly growing, low pathogenicity mycobacterial species. These observations may hint at potential targets for therapies to treat the emerging opportunistic infections provoked by the widespread environmental mycobacterial species and may contribute to the delineation of the genomic and physiological differences between the pathogenic and non-pathogenic mycobacterial species.
Collapse
|
10
|
Tramonti A, Milano T, Nardella C, di Salvo ML, Pascarella S, Contestabile R. Salmonella typhimurium PtsJ is a novel MocR-like transcriptional repressor involved in regulating the vitamin B 6 salvage pathway. FEBS J 2017; 284:466-484. [PMID: 27987384 DOI: 10.1111/febs.13994] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
Abstract
The vitamin B6 salvage pathway, involving pyridoxine 5'-phosphate oxidase (PNPOx) and pyridoxal kinase (PLK), recycles B6 vitamers from nutrients and protein turnover to produce pyridoxal 5'-phosphate (PLP), the catalytically active form of the vitamin. Regulation of this pathway, widespread in living organisms including humans and many bacteria, is very important to vitamin B6 homeostasis but poorly understood. Although some information is available on the enzymatic regulation of PNPOx and PLK, little is known on their regulation at the transcriptional level. In the present work, we identified a new MocR-like regulator, PtsJ from Salmonella typhimurium, which controls the expression of the pdxK gene encoding one of the two PLKs expressed in this organism (PLK1). Analysis of pdxK expression in a ptsJ knockout strain demonstrated that PtsJ acts as a transcriptional repressor. This is the first case of a MocR-like regulator acting as repressor of its target gene. Expression and purification of PtsJ allowed a detailed characterisation of its effector and DNA-binding properties. PLP is the only B6 vitamer acting as effector molecule for PtsJ. A DNA-binding region composed of four repeated nucleotide sequences is responsible for binding of PtsJ to its target promoter. Analysis of binding stoichiometry revealed that protein subunits/DNA molar ratio varies from 4 : 1 to 2 : 1, depending on the presence or absence of PLP. Structural characteristics of DNA transcriptional factor-binding sites suggest that PtsJ binds DNA according to a different model with respect to other characterised members of the MocR subgroup.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy.,Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Teresa Milano
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Caterina Nardella
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Martino L di Salvo
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Italy
| |
Collapse
|
11
|
Data from computational analysis of the peptide linkers in the MocR bacterial transcriptional regulators. Data Brief 2016; 9:292-313. [PMID: 27668276 PMCID: PMC5026710 DOI: 10.1016/j.dib.2016.08.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/24/2016] [Accepted: 08/30/2016] [Indexed: 11/24/2022] Open
Abstract
Detailed data from statistical analyses of the structural properties of the inter-domain linker peptides of the bacterial regulators of the family MocR are herein reported. MocR regulators are a recently discovered subfamily of bacterial regulators possessing an N-terminal domain, 60 residue long on average, folded as the winged-helix-turn-helix architecture responsible for DNA recognition and binding, and a large C-terminal domain (350 residue on average) that belongs to the fold type-I pyridoxal 5′-phosphate (PLP) dependent enzymes such aspartate aminotransferase. Data show the distribution of several structural characteristics of the linkers taken from bacterial species from five different phyla, namely Actinobacteria, Alpha-, Beta-, Gammaproteobacteria and Firmicutes. Interpretation and discussion of reported data refer to the article “Structural properties of the linkers connecting the N- and C- terminal domains in the MocR bacterial transcriptional regulators” (T. Milano, S. Angelaccio, A. Tramonti, M. L. Di Salvo, R. Contestabile, S. Pascarella, 2016) [1].
Collapse
|