1
|
Baawad A, Jacho D, Hamil T, Yildirim-Ayan E, Kim DS. Polysaccharide-Based Composite Scaffolds for Osteochondral and Enthesis Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:123-140. [PMID: 36181352 DOI: 10.1089/ten.teb.2022.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The rotator cuff and Achilles tendons along with the anterior cruciate ligament (ACL) are frequently injured with limited healing capacity. At the soft-hard tissue interface, enthesis is prone to get damaged and its regeneration in osteochondral defects is essential for complete healing. The current clinical techniques used in suturing procedures to reattach tendons to bones need much improvement for the generation of the native interface tissue, that is, enthesis, for patients to regain their full functions. Recently, inspired by the composite native tissue, much effort has been made to fabricate composite scaffolds for enthesis tissue regeneration. This review first focuses on the studies that used composite scaffolds for the regeneration of enthesis. Then, the use of polysaccharides for osteochondral tissue engineering is reviewed and their potential for enthesis regeneration is presented based on their supporting effects on osteogenesis and chondrogenesis. Gellan gum (GG) is selected and reviewed as a promising polysaccharide due to its unique osteogenic and chondrogenic activities that help avoid the inherent weakness of dissimilar materials in composite scaffolds. In addition, original preliminary results showed that GG supports collagen type I production and upregulation of osteogenic marker genes. Impact Statement Enthesis regeneration is essential for complete and functional healing of tendon and ligament tissues. Current suturing techniques to reattach the tendon/ligament to bones have high failure rates. This review highlights the studies on biomimetic scaffolds aimed to regenerate enthesis. In addition, the potential of using polysaccharides to regenerate enthesis is discussed based on their ability to regenerate osteochondral tissues. Gellan gum is presented as a promising biopolymer that can be modified to simultaneously support bone and cartilage regeneration by providing structural continuity for the scaffold.
Collapse
Affiliation(s)
- Abdullah Baawad
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| | - Diego Jacho
- Department of Bioengineering, University of Toledo, Toledo, Ohio, USA
| | - Taijah Hamil
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, University of Toledo, Toledo, Ohio, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
2
|
Hesperidin, Hesperetin, Rutinose, and Rhamnose Act as Skin Anti-Aging Agents. Molecules 2023; 28:molecules28041728. [PMID: 36838716 PMCID: PMC9963045 DOI: 10.3390/molecules28041728] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Aging is a complex physiological process that can be accelerated by chemical (high blood glucose levels) or physical (solar exposure) factors. It is accompanied by the accumulation of altered molecules in the human body. The accumulation of oxidatively modified and glycated proteins is associated with inflammation and the progression of chronic diseases (aging). The use of antiglycating agents is one of the recent approaches in the preventive strategy of aging and natural compounds seem to be promising candidates. Our study focused on the anti-aging effect of the flavonoid hesperetin, its glycoside hesperidin and its carbohydrate moieties rutinose and rhamnose on young and physiologically aged normal human dermal fibroblasts (NHDFs). The anti-aging activity of the test compounds was evaluated by measuring matrix metalloproteinases (MMPs) and inflammatory interleukins by ELISA. The modulation of elastase, hyaluronidase, and collagenase activity by the tested substances was evaluated spectrophotometrically by tube tests. Rutinose and rhamnose inhibited the activity of pure elastase, hyaluronidase, and collagenase. Hesperidin and hesperetin inhibited elastase and hyaluronidase activity. In skin aging models, MMP-1 and MMP-2 levels were reduced after application of all tested substances. Collagen I production was increased after the application of rhamnose and rutinose.
Collapse
|
3
|
Peng CH, Lin HC, Lin CL, Wang CJ, Huang CN. Abelmoschus esculentus subfractions improved nephropathy with regulating dipeptidyl peptidase-4 and type 1 glucagon-like peptide receptor in type 2 diabetic rats. J Food Drug Anal 2018; 27:135-144. [PMID: 30648566 PMCID: PMC9298636 DOI: 10.1016/j.jfda.2018.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
Abelmoschus esculentus (AE) has been used in traditional medicine to ameliorate hyperglycemia, but its mucilage increased bioassay difficulties. We have obtained a series of AE subfractions. Among them F1 and F2 regulated dipeptidyl peptidase-4 (DPP-4) and type 1 glucagon-like peptide receptor (GLP-1R), the treatment targets for type 2 diabetes. F1, F2 and fraction residues (FR) showed advantage on different aspects, which attenuates insulin resistance and metabolic disorder in vivo, and prevents renal-tubular change in vitro. In the present study, using type 2 diabetes model induced by high fat diet (HFD) and streptozotocin (STZ), we aim to investigate whether AE prevent diabetic nephropathy by regulating the putative markers. The results showed that all the subfractions ameliorated albuminuria and renal hyperfiltration (measured by creatinine clearance rate; CCr) accompanied with diabetes, while F2 acted most promptly and consistently. Histologically AE reduced renal tubular change, fibrosis and fat deposition. F2 and FR exerted significant effects to decrease DPP-4 while increase GLP-1R. Although all the subfractions were effective to reduce oxidative stress, only F2 acted on kidneys specifically. In conclusion, we have demonstrated AE has benefits to regulate DPP-4 and GLP-1R, to reduce oxidative stress and renal fibrosis, with resultant to improve renal function and prevent diabetic renal damage. Taken together, F2 could be more promising to be developed as adjuvant for diabetic nephropathy.
Collapse
Affiliation(s)
- Chiung-Huei Peng
- Division of Basic Medical Science, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City, 43302, Taiwan
| | - Hsing-Chun Lin
- Department of Nutrition, Chung-Shan Medical University, Number 110, Section 1, Jianguo North Road, Taichung, 402, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, Chung-Shan Medical University, Number 110, Section 1, Jianguo North Road, Taichung, 402, Taiwan
| | - Chau-Jong Wang
- Institute of Biochemistry, Microbiology and Immunology, Chung-Shan Medical University, Number 110, Section 1, Jianguo North Road, Taichung, 402, Taiwan.
| | - Chien-Ning Huang
- Institute of Medicine, Chung-Shan Medical University, Number 110, Section 1, Jianguo North Road, Taichung, 402, Taiwan; Department of Internal Medicine, Chung-Shan Medical University Hospital, Number 110, Section 1, Jianguo North Road, Taichung, 402, Taiwan.
| |
Collapse
|
4
|
Huang CN, Wang CJ, Lin CL, Lin HT, Peng CH. The nutraceutical benefits of subfractions of Abelmoschus esculentus in treating type 2 diabetes mellitus. PLoS One 2017; 12:e0189065. [PMID: 29216237 PMCID: PMC5720626 DOI: 10.1371/journal.pone.0189065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/17/2017] [Indexed: 12/23/2022] Open
Abstract
Abelmoschus esculentus (AE), a commonly consumed vegetable, is well-known for its anti-hyperglycemic effects. However, few scientific reports have identified its targets because mucilage increases the difficulty of manipulation. We recently reported extraction steps to obtain subfractions of AE, which were found to attenuate the adverse effects of high glucose and fatty acid in vitro. In this study, we used modified extraction steps and type 2 diabetic rats to explore whether AE subfractions can improve the metabolic disturbances caused by insulin resistance in vivo. AE subfractions (F1, F2, and FR) were prepared. The type 2 diabetes model was induced by feeding male Sprague-Dawley rats with a high-fat diet and injecting them with 35 mg/kgbw streptozotocin when their body weight reached 475 ± 15 g. After a hyperglycemic status had been confirmed, the rats were tube-fed with or without different doses of AE subfractions. Serum glucose, lipid markers, insulin, HbA1c and HOMA-IR were measured in the following 12 weeks. Serum glucose promptly increased and insulin resistance was noted in the diabetic rats (glucose: 360–500 mg/dl, HOMA-IR 9.8–13.8). F2, rich in polysaccharides and carbohydrates, was most effective in attenuating hyperglycemia and insulin resistance (glucose: 200 mg/dl; HOMA-IR: 5.3) and especially HbA1C (from 8.0% to 6.5%). All of the AE subfractions lowered the level of triglycerides and free fatty acid, but not the level of total cholesterol. FR significantly increased the high-density lipoprotein/low-density lipoprotein ratio, indicating its benefits for lipoprotein profiles. While F2 and FR were associated with weight gain, F1 possessed an anti-obese effect. In conclusion, whether it is consumed as a vegetable or as a nutraceutical, AE has the potential to be an adjuvant therapy for diabetes. AE subfractions could be developed individually and deserve further investigation.
Collapse
Affiliation(s)
- Chien-Ning Huang
- Department of Internal Medicine, Chung-Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Chau-Jong Wang
- Institute of Biochemistry, Microbiology and Immunology, Chung-Shan Medical University, Taichung, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Hui-Ting Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung-Shan Medical University, Taichung, Taiwan
| | - Chiung-Huei Peng
- Division of Basic Medical Science, Hungkuang University, Shalu District, Taichung City, Taiwan
- * E-mail:
| |
Collapse
|
5
|
Peng CH, Chyau CC, Wang CJ, Lin HT, Huang CN, Ker YB. Abelmoschus esculentus fractions potently inhibited the pathogenic targets associated with diabetic renal epithelial to mesenchymal transition. Food Funct 2016; 7:728-40. [PMID: 26787242 DOI: 10.1039/c5fo01214g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although Abelmoschus esculentus (AE) is known for anti-hyperglycemia, few reports have addressed its target. Our recent studies have focused on diabetic renal epithelial to mesenchymal transition (EMT), which plays a critical role in fibrosis that accompanies increasing vimentin and suggested signals DPP-4/AT-1/TGF-β1. This study aimed to investigate whether AE is useful for preventing diabetic renal EMT. We used a succession of extractions and obtained the corresponding fractions F1-F5, each with its own individual properties: F1 inhibits high glucose-stimulated vimentin, AT-1, TGF-β1, and DPP-4, and recovers E-cadherin in tubular cells; F2 decreases high glucose-induced vimentin, AT-1 and DPP-4; F3-F5 do not reduce the expression of vimentin. Chemical analysis revealed that F1 is rich of flavonoid glycosides especially quercetin glucosides, and pentacyclic triterpene ester. F2 contains a large amount of carbohydrates and polysaccharides composed of uronic acid, galactose, glucose, myo-inositol etc. In conclusion, AE has the potential to serve as an adjuvant for diabetic nephropathy, with F1 and F2 especially deserving further investigation and development.
Collapse
Affiliation(s)
- Chiung-Huei Peng
- Division of Basic Medical Science, Hungkuang University, No. 1018, Section 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan
| | - Charng-Cherng Chyau
- Research Institute of Biotechnology, Hungkuang University, No. 1018, Section 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan
| | - Chau-Jong Wang
- Institute of Biochemistry and Biotechnology, Chung-Shan Medical University, Number 110, Section 1, Chien-Kuo North Road, Taichung 402, Taiwan
| | - Huei-Ting Lin
- Institute of Biochemistry and Biotechnology, Chung-Shan Medical University, Number 110, Section 1, Chien-Kuo North Road, Taichung 402, Taiwan
| | - Chien-Ning Huang
- Department of Internal Medicine, Chung-Shan Medical University Hospital, Number 110, Section 1, Chien-Kuo North Road, Taichung 402, Taiwan and Institute of Medicine, Chung-Shan Medical University, Number 110, Section 1, Chien-Kuo North Road, Taichung 402, Taiwan.
| | - Yaw-Bee Ker
- Department of Food Science and Technology, Hungkuang University, No. 1018, Section 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan.
| |
Collapse
|
6
|
Lu L, Liu Q, Jin L, Yin Z, Xu L, Xiao M. Enzymatic Synthesis of Rhamnose Containing Chemicals by Reverse Hydrolysis. PLoS One 2015; 10:e0140531. [PMID: 26505759 PMCID: PMC4624630 DOI: 10.1371/journal.pone.0140531] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/28/2015] [Indexed: 11/19/2022] Open
Abstract
Rhamnose containing chemicals (RCCs) are widely occurred in plants and bacteria and are known to possess important bioactivities. However, few of them were available using the enzymatic synthesis method because of the scarcity of the α-L-rhamnosidases with wide acceptor specificity. In this work, an α-L-rhamnosidase from Alternaria sp. L1 was expressed in Pichia pastroris strain GS115. The recombinant enzyme was purified and used to synthesize novel RCCs through reverse hydrolysis in the presence of rhamnose as donor and mannitol, fructose or esculin as acceptors. The effects of initial substrate concentrations, reaction time, and temperature on RCC yields were investigated in detail when using mannitol as the acceptor. The mannitol derivative achieved a maximal yield of 36.1% by incubation of the enzyme with 0.4 M L-rhamnose and 0.2 M mannitol in pH 6.5 buffers at 55°C for 48 h. In identical conditions except for the initial acceptor concentrations, the maximal yields of fructose and esculin derivatives reached 11.9% and 17.9% respectively. The structures of the three derivatives were identified to be α-L-rhamnopyranosyl-(1→6')-D-mannitol, α-L-rhamnopyranosyl-(1→1')-β-D-fructopyranose, and 6,7-dihydroxycoumarin α-L-rhamnopyranosyl-(1→6')-β-D-glucopyranoside by ESI-MS and NMR spectroscopy. The high glycosylation efficiency as well as the broad acceptor specificity of this enzyme makes it a powerful tool for the synthesis of novel rhamnosyl glycosides.
Collapse
Affiliation(s)
- Lili Lu
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250100, PR China
| | - Qian Liu
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250100, PR China
- Academy of State Administration of Grain, Beijing 100037, PR China
| | - Lan Jin
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250100, PR China
| | - Zhenhao Yin
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250100, PR China
| | - Li Xu
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250100, PR China
| | - Min Xiao
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250100, PR China
- * E-mail:
| |
Collapse
|
7
|
Production of sulfated oligosaccharides from the seaweed Ulva sp. using a new ulvan-degrading enzymatic bacterial crude extract. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.05.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
|
9
|
Robert L, Robert AM, Labat-Robert J. The Maillard reaction – Illicite (bio)chemistry in tissues and food. ACTA ACUST UNITED AC 2011; 59:321-8. [DOI: 10.1016/j.patbio.2011.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Faury G, Molinari J, Rusova E, Mariko B, Raveaud S, Huber P, Velebny V, Robert A, Robert L. Receptors and aging: Structural selectivity of the rhamnose-receptor on fibroblasts as shown by Ca2+-mobilization and gene-expression profiles. Arch Gerontol Geriatr 2011; 53:106-12. [DOI: 10.1016/j.archger.2010.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 05/12/2010] [Accepted: 05/14/2010] [Indexed: 11/24/2022]
|
11
|
Robert L, Labat-Robert J, Robert AM. The Maillard reaction. From nutritional problems to preventive medicine. ACTA ACUST UNITED AC 2010; 58:200-6. [DOI: 10.1016/j.patbio.2009.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 09/14/2009] [Indexed: 11/30/2022]
|
12
|
Robert L, Robert AM, Renard G. Biological effects of hyaluronan in connective tissues, eye, skin, venous wall. Role in aging. ACTA ACUST UNITED AC 2010; 58:187-98. [DOI: 10.1016/j.patbio.2009.09.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
|
13
|
Age- and passage-dependent upregulation of fibroblast elastase-type endopeptidase activity. Role of advanced glycation endproducts, inhibition by fucose- and rhamnose-rich oligosaccharides. Arch Gerontol Geriatr 2009; 50:327-31. [PMID: 19560218 DOI: 10.1016/j.archger.2009.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Revised: 05/18/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
Abstract
It could be shown using the in vitro cell culture aging model, that elastase-type endopeptidase activity is progressively upregulated with successive passages (in vitro aging). Similar results were obtained previously by determining elastase-type activity as a function of age in aorta extracts (human) and skin extracts (mouse). Among the possible mechanisms involved we tested the role of advanced glycation endproducts (AGEs) on this process. AGE-production was shown to increase with age, exemplified by the exponential age-dependent crosslinking of collagen, demonstrated by Fritz Verzár, already in 1963. Several AGEs significantly upregulated elastase-type activity when added to the culture medium of fibroblasts. This effect appears to be mediated by some AGE-receptors as shown previously, and could be inhibited by a 5 kDa rhamnose-rich oligosaccharide (RROP-3) as well as by a fucose-rich oligosaccharide (FROP-3). When present in the culture media, RROP-3 and FROP-3 efficiently inhibited the passage-dependent upregulation of elastase-type activity expressed by human skin fibroblasts. The use of specific inhibitors and zymography suggested that matrix metalloproteinases (MMP)-9 activation and expression are mainly involved. A detailed discussion is proposed for the interpretation of age-dependent modifications of tissues as vascular wall and skin in the light of these and related experiments, highlighting the role of several specific receptors in the mediation of the observed reactions.
Collapse
|
14
|
Tanikawa T, Fridman M, Zhu W, Faulk B, Joseph IC, Kahne D, Wagner BK, Clemons PA. Using biological performance similarity to inform disaccharide library design. J Am Chem Soc 2009; 131:5075-83. [PMID: 19298063 DOI: 10.1021/ja806583y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Designing better small-molecule discovery libraries requires having methods to assess the consequences of different synthesis decisions on the biological performance of resulting library members. Since we are particularly interested in how stereochemistry affects performance in biological assays, we prepared a disaccharide library containing systematic stereochemical variations, assayed the library for different biological effects, and developed methods to assess the similarity of performance between members across multiple assays. These methods allow us to ask which subsets of stereochemical features best predict similarity in patterns of biological performance between individual members and which features produce the greatest variation of outcomes. We anticipate that the data-analysis approach presented here can be generalized to other sets of biological assays and other chemical descriptors. Methods to assess which structural features of library members produce the greatest similarity in performance for a given set of biological assays should help prioritize synthesis decisions in second-generation library development targeting the underlying cell-biological processes. Methods to assess which structural features of library members produce the greatest variation in performance should help guide decisions about what synthetic methods need to be developed to make optimal small-molecule screening collections.
Collapse
Affiliation(s)
- Tetsuya Tanikawa
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Effect of advanced glycation endproducts on gene expression profiles of human dermal fibroblasts. Biogerontology 2008; 9:177. [DOI: 10.1007/s10522-008-9129-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 02/05/2008] [Indexed: 01/23/2023]
|
16
|
Ravelojaona V, Robert AM, Robert L, Renard G. Collagen biosynthesis in cell culture: Comparison of corneal keratocytes and skin fibroblasts. ACTA ACUST UNITED AC 2008; 56:66-9. [DOI: 10.1016/j.patbio.2007.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
|
17
|
Ravelojaona V, Robert AM, Robert L. Expression of senescence-associated beta-galactosidase (SA-beta-Gal) by human skin fibroblasts, effect of advanced glycation end-products and fucose or rhamnose-rich polysaccharides. Arch Gerontol Geriatr 2008; 48:151-4. [PMID: 18207583 DOI: 10.1016/j.archger.2007.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 12/01/2007] [Accepted: 12/06/2007] [Indexed: 12/20/2022]
Abstract
Expression by cells of the SA-beta-Gal was shown to be a reliable indicator of the switch mechanism used by cells to enter the senescent phenotype. We used this method in order to explore the variation of SA-beta-Gal-positive cells with passage number and time spent in culture. Both parameters produced an increase of SA-beta-Gal-positive cells. The addition of a Maillard-product (advanced glycation end-product=AGE) to the fibroblast cultures also increased SA-beta-Gal expression. Fucose- and rhamnose-rich oligo- and polysaccharides (FROPs and RROPs, respectively) provided a significant protection against this AGE-induced increase of SA-beta-Gal-positive cells. It is speculated that these processes might well play an important role in skin aging.
Collapse
Affiliation(s)
- V Ravelojaona
- Laboratoire de Recherches Ophtalmologiques, Hôtel Dieu, Université Paris, France
| | | | | |
Collapse
|