1
|
Cuadrado C, Arribas C, Sanchiz A, Pedrosa MM, Gamboa P, Betancor D, Blanco C, Cabanillas B, Linacero R. Effects of enzymatic hydrolysis combined with pressured heating on tree nut allergenicity. Food Chem 2024; 451:139433. [PMID: 38692238 DOI: 10.1016/j.foodchem.2024.139433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Hazelnut, pistachio and cashew are tree nuts with health benefits but also with allergenic properties being prevalent food allergens in Europe. The allergic characteristics of these tree nuts after processing combining heat, pressure and enzymatic digestion were analyzed through in vitro (Western blot and ELISA) and in vivo test (Prick-Prick). In the analyzed population, the patients sensitized to Cor a 8 (nsLTP) were predominant over those sensitized against hazelnut seed storage proteins (Sprot, Cor a 9 and 14), which displayed higher IgE reactivity. The protease E5 effectively hydrolyzed proteins from hazelnut and pistachio, while E7 was efficient for cashew protein hydrolysis. When combined with pressured heating (autoclave and Controlled Instantaneous Depressurization (DIC)), these proteases notably reduced the allergenic reactivity. The combination of DIC treatment before enzymatic digestion resulted in the most effective methodology to drastically reduce or indeed eliminate the allergenic capacity of tree nuts.
Collapse
Affiliation(s)
- Carmen Cuadrado
- Departamento de Tecnología de Alimentos, INIA-CSIC, Ctra. Coruña km 7.5, 28040 Madrid, Spain.
| | - Claudia Arribas
- Departamento de Tecnología de Alimentos, INIA-CSIC, Ctra. Coruña km 7.5, 28040 Madrid, Spain
| | - Africa Sanchiz
- Departamento de Tecnología de Alimentos, INIA-CSIC, Ctra. Coruña km 7.5, 28040 Madrid, Spain
| | - Mercedes M Pedrosa
- Departamento de Tecnología de Alimentos, INIA-CSIC, Ctra. Coruña km 7.5, 28040 Madrid, Spain
| | - Pedro Gamboa
- Servicio de Alergia, Hospital Universitario de Cruces, 48903 Barakaldo, Spain
| | - Diana Betancor
- Departamento de Alergia, IIS-Fundación Jiménez Diaz, 28040 Madrid, Spain
| | - Carlos Blanco
- Servicio de Alergia, IIS-Princesa (Instituto de Investigación Sanitaria Hospital Universitario de La Princesa), 28006 Madrid, Spain
| | - Beatriz Cabanillas
- Servicio de Alergia, Instituto de Investigación Hospital 12 de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Rosario Linacero
- Departamento de Genética, Microbiología y Fisiología, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Simões R, Ribeiro AC, Dias R, Freitas V, Soares S, Pérez-Gregorio R. Unveiling the Immunomodulatory Potential of Phenolic Compounds in Food Allergies. Nutrients 2024; 16:551. [PMID: 38398875 PMCID: PMC10891931 DOI: 10.3390/nu16040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Food allergies are becoming ever more prevalent around the world. This pathology is characterized by the breakdown of oral tolerance to ingested food allergens, resulting in allergic reactions in subsequent exposures. Due to the possible severity of the symptoms associated with this pathology, new approaches to prevent it and reduce associated symptoms are of utmost importance. In this framework, dietary phenolic compounds appear as a tool with a not fully explored potential. Some phenolic compounds have been pointed to with the ability to modulate food allergies and possibly reduce their symptoms. These compounds can modulate food allergies through many different mechanisms, such as altering the bioaccessibility and bioavailability of potentially immunogenic peptides, by modulating the human immune system and by modulating the composition of the human microbiome that resides in the oral cavity and the gastrointestinal tract. This review deepens the state-of-the-art of the modulation of these mechanisms by phenolic compounds. While this review shows clear evidence that dietary supplementation with foods rich in phenolic compounds might constitute a new approach to the management of food allergies, it also highlights the need for further research to delve into the mechanisms of action of these compounds and decipher systematic structure/activity relationships.
Collapse
Affiliation(s)
- Rodolfo Simões
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
- Food and Health Omics Group, Food and Agroecology Institute, University of Vigo, Campus As Lagoas, s/n, 32004 Ourense, Spain
- Food and Health Omics Group, Department of Chemistry and Biochemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| | - Ana Catarina Ribeiro
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Ricardo Dias
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Victor Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Susana Soares
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Rosa Pérez-Gregorio
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
- Food and Health Omics Group, Food and Agroecology Institute, University of Vigo, Campus As Lagoas, s/n, 32004 Ourense, Spain
- Food and Health Omics Group, Department of Chemistry and Biochemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| |
Collapse
|
3
|
Wang N, Zhang C, Li H, Zhang D, Wu J, Li Y, Yang L, Zhang N, Wang X. Addition of Canna edulis starch and starch nanoparticles to stabilized Pickering emulsions: In vitro digestion and fecal fermentation. Int J Biol Macromol 2024; 258:128993. [PMID: 38163505 DOI: 10.1016/j.ijbiomac.2023.128993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Starch nanoparticles (SNPs) were prepared through acid hydrolysis of Canna edulis native starch and modified with octenyl succinic anhydride (OSA) to yield OS-starch and OS-SNPs. These modified particles were used to stabilize curcumin-loaded Pickering emulsions. Effects on gut microbiota during in vitro fecal fermentation were examined. The surface of OS-starch exhibits a porous structure, while OS-SNPs display layered grooves. OSA modification was confirmed by Fourier transform infrared spectroscopy (with peaks at 1728 cm-1 and 1573 cm-1) and proton nuclear magnetic resonance spectra (0.5-2 ppm). The degree of substitution for OS-starch and OS-SNPs is 0.0106 ± 0.0004 and 0.0079 ± 0.0003, respectively. Following modification, the crystallinity decreased from 35.69 ± 0.46 % (native starch) to 30.17 ± 0.70 % (OS-starch), SNPs decreased from 45.87 ± 0.89 % to 43.63 ± 0.64 % (OS-SNPs). Contact angles for OS-starch and OS-SNPs are 77.47 ± 1.78 and 55.57 ± 0.21, respectively. OS-SNPs exhibited superior emulsification properties compared to OS-starch, forming stable Pickering emulsions with pseudoplastic fluid behavior and enhanced curcumin storage protection over 14 days (60.88 ± 4.26 %) with controlled release. Stabilizing Pickering emulsions with OS-starch and OS-SNPs positively affected on gut microbiota and improved the intestinal environment, showing promise for their application in transportation systems and innovative prebiotic food formulations.
Collapse
Affiliation(s)
- Nan Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Chi Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Houxier Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Dachuan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Yan Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Li Yang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Nan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China.
| |
Collapse
|
4
|
Xu Y, Wang H, Mu G, Zhu X. Allergenicity evaluation of fermented milk prepared by co-fermentation of Lactobacillus plantarum 7-2 and commercial starters after in vitro digestive. Food Chem X 2023; 20:100911. [PMID: 38144817 PMCID: PMC10740112 DOI: 10.1016/j.fochx.2023.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 12/26/2023] Open
Abstract
Milk allergy is one of the most common food allergies, in which αS-casein is the major milk allergen. Under optimized conditions, mixed starter (containing Lactobacillus plantarum 7-2 and commercial starter) effectively degraded αS-casein of skimmed milk and reduced the pressure of stomach digestion. The fermented milk prepared by mixed starter was determined by ELISA, the antigenicity of αS-casein was reduced by 77.53%. Compared with the fermented milk prepared by commercial starter, label-free quantitative proteomics demonstrated that the mixed starter more efficiently degraded the epitopes of major milk allergens and influenced the digestion pattern of the fermented milk. Therefore, L. plantarum 7-2 shows positive potential in reducing the antigenicity of αS-casein and others. In addition, this study predicted that the new epitopes produced in the fermentation process could induce immunity using molecular simulation.
Collapse
Affiliation(s)
- Yunpeng Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Hongxin Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| |
Collapse
|
5
|
Guo Y, Wang B, Gao H, He C, Xin S, Hua R, Liu X, Zhang S, Xu J. Insights into the Characteristics and Functions of Mast Cells in the Gut. GASTROENTEROLOGY INSIGHTS 2023; 14:637-652. [DOI: 10.3390/gastroent14040043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Mast cells have vital functions in allergic responses and parasite ejection, while the underlying mechanisms remain unclear. Meanwhile, MCs are essential for the maintenance of GI barrier function, and their interactions with neurons, immune cells, and epithelial cells have been related to various gastrointestinal (GI) disorders. An increasing number of investigations are being disclosed, with a lack of inner connections among them. This review aims to highlight their properties and categorization and further delve into their participation in GI diseases via interplay with neurons and immune cells. We also discuss their roles in diseases like inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). Based on the evidence, we advocated for their potential application in clinical practices and advocated future research prospects.
Collapse
Affiliation(s)
- Yuexin Guo
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Boya Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Clinical Laboratory, Aerospace Center Hospital, Peking University, Beijing 100049, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Rongxuan Hua
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Sitian Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
6
|
Fu W, Chen C, Liu C, Tao S, Xue W. Changes in wheat protein digestibility and allergenicity: Role of Pediococcus acidilactici XZ31 and yeast during dough fermentation. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
7
|
Pereira RN, Rodrigues RM, Madalena DA, Vicente A. Tackling food allergens-The role of food processing on proteins' allergenicity. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:317-351. [PMID: 37722777 DOI: 10.1016/bs.afnr.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
This chapter examines how innovative and emerging food processing technologies, such as those that use heat, electricity, electromagnetic waves, and pressure, can modify protein denaturation, aggregation, and intermolecular interactions pathways, which can result in varying immunoreactive responses. It emphasizes the need to understand how these processing methods affect the protein epitopes recognized by antibodies and their respective priming pathways, especially during the sensitization stage that precedes an allergic response. Although traditional processing methods have been investigated, the impact of novel technologies on food protein allergenicity remains largely unknown. The chapter specifically focuses on milk proteins, which have clinical significance and are associated with cow's milk allergy, one of the most common food allergies in young children. Additionally, it examines potential scientific advancements that novel processing methods may bring to this field.
Collapse
Affiliation(s)
- Ricardo N Pereira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Rui M Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniel A Madalena
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - António Vicente
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
8
|
da Silva JF, Morais ATDB, Santos WG, M. Ahrné L, Cardoso DR. UV-C light promotes the reductive cleavage of disulfide bonds in β-Lactoglobulin and improves in vitro gastric digestion. Food Res Int 2023; 168:112729. [PMID: 37120195 DOI: 10.1016/j.foodres.2023.112729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
β-Lactoglobulin (β-Lg) is the main protein in whey and is known for its allergenicity and resistance to the digestion of pepsin and trypsin. The UV-C photoinduced cleavage of disulfide bonds in β-Lactoglobulin, as promoted by excitation of tryptophan residues (Trp), is shown to induce changes in the protein's secondary structure, significantly reducing the protein's resistance to pepsin digestion. The UV-C light-induced changes in the protein secondary structure are marked by an increase in the contribution of β-sheet and α-helix structures with a concomitantly smaller contribution of the β-turn structural motif. The photoinduced cleavage of disulfide bonds in β-Lg has an apparent quantum yield of ф = 0.0015 ± 0.0003 and was shown by transient absorption laser flash photolysis to arise by two different pathways: a) the reduction of the disulfide bond Cys66Cys160 occurs by direct electron transfer from the triplet-excited 3Trp to the disulfide bond due to the existence of a CysCys/Trp triad (Cys66Cys160/Trp61) and b) the reduction of the buried Cys106Cys119 disulfide bond involves a reaction with a solvated electron originated by the photoejection of electrons from the triplet-excited 3Trp decay. The in vitro gastric digestion index for UV-C-treated β-Lg is revealed to have increased significantly by 36 ± 4 % and 9 ± 2 % under simulated elderly and young adult digestive conditions, respectively. When compared to the native protein, the peptide mass fingerprint profile of digested UV-C-treated β-Lg shows a higher content and variety of peptides, including the production of some exclusive bioactive peptides such as PMHIRL and EKFDKALKALPMH.
Collapse
|
9
|
Lu Y, Cheng H, Jiang S, Lin L, Lu J. Impact of three different processing methods on the digestibility and allergenicity of Chinese mitten crab (Eriocheir sinensis) tropomyosin. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Sabari S, Julmohammad N, Jahurul HAM, Matanjun P, Ab. Wahab N. In Vitro Infant Digestion of Whey Proteins Isolate-Lactose. Foods 2023; 12:667. [PMID: 36766193 PMCID: PMC9914322 DOI: 10.3390/foods12030667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
The model in vitro protein digestion technique has received greater attention due to providing significant advantages compared to in vivo experiments. This research employed an in vitro infant digestive static model to examine the protein digestibility of whey proteins isolate-lactose (WPI-Lac). The polyacrylamide gel electrophoresis (PAGE) pattern for alpha-lactalbumin of WPI at 60 min showed no detectable bands, while the alpha-lactalbumin of the WPI-Lac was completely digested after 5 min of gastric digestion. The beta-lactoglobulin of the WPI-Lac was found to be similar to the beta-lactoglobulin of the WPI, being insignificant at pH 3.0. The alpha-lactalbumin of the WPI decreased after 100 min of duodenal digestion at pH 6.5, and the WPI-Lac was completely digested after 60 min. The peptides were identified as ~2 kilodalton (kDa) in conjugated protein, which indicated that the level of degradation of the protein was high, due to the hydrolysis progress. The conjugated protein increased the responsiveness to digestive proteolysis, potentially leading to the release of immunogenic protein by lactose, and to the creation of hypoallergenic protein.
Collapse
Affiliation(s)
- Sarizan Sabari
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Norliza Julmohammad
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Haque Akanda Md Jahurul
- Department of Agriculture, School of Agriculture, University of Arkansas, 1200 North University Dr., M/S 4913, Pine Bluff, AR 71601, USA
| | - Patricia Matanjun
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Noorakmar Ab. Wahab
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
11
|
Parvalbumin: A Major Fish Allergen and a Forensically Relevant Marker. Genes (Basel) 2023; 14:genes14010223. [PMID: 36672964 PMCID: PMC9858982 DOI: 10.3390/genes14010223] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Parvalbumins (PVALBs) are low molecular weight calcium-binding proteins. In addition to their role in many biological processes, PVALBs play an important role in regulating Ca2+ switching in muscles with fast-twitch fibres in addition to their role in many biological processes. The PVALB gene family is divided into two gene types, alpha (α) and beta (β), with the β gene further divided into two gene types, beta1 (β1) and beta2 (β2), carrying traces of whole genome duplication. A large variety of commonly consumed fish species contain PVALB proteins which are known to cause fish allergies. More than 95% of all fish-induced food allergies are caused by PVALB proteins. The authentication of fish species has become increasingly important as the seafood industry continues to grow and the growth brings with it many cases of food fraud. Since the PVALB gene plays an important role in the initiation of allergic reactions, it has been used for decades to develop alternate assays for fish identification. A brief review of the significance of the fish PVALB genes is presented in this article, which covers evolutionary diversity, allergic properties, and potential use as a forensic marker.
Collapse
|
12
|
Zhang L, Zhou R, Zhang K, Zhang Y, Xia S, Zhou P. Antigen presentation induced variation in ovalbumin sensitization between chicken and duck species. Food Funct 2023; 14:445-456. [PMID: 36519382 DOI: 10.1039/d2fo02370a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The difference in the allergenicity of chicken ovalbumin (C-OVA) and duck ovalbumin (D-OVA) can be related to their differences in antigen presentation. This study explored the differences in uptake between C-OVA and D-OVA through fluorescence dye-labeling, DC antigen presentation, and the immune response of T cells by using C-OVA and D-OVA allergic animal and cell models. The ileum DCs of mice in the C-C group took up more C-OVA than that of D-D and C-D groups through in vivo imaging. Furthermore, C-OVA induced the maturation of DCs in mice in the C-C group as shown in the up-regulation of the expressions of MHC II, CD86 and CD80 on the surface of DCs, and enhanced the ability of antigen presentation. In addition, C-OVA induced the maturation of DCs, promoted the differentiation of T cells into Th2 cells, increased the secretion of the cytokine IL-4 and specific antibody s-IgE, and thus generated an immune response. However, sensitized and cross sensitized D-OVA (D-D and C-D groups) couldn't induce the maturation of DCs, and induced less differentiation of T cells and lower secretion of cytokines compared to C-OVA. In conclusion, the differences in antigen presentation was one of the important factors resulting in the differences in the sensitization between C-OVA and D-OVA.
Collapse
Affiliation(s)
- Lina Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China. .,School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Ruoya Zhou
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Kai Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Yiqian Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Siquan Xia
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Peng Zhou
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China. .,School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| |
Collapse
|
13
|
Schrama D, Raposo de Magalhães C, Cerqueira M, Carrilho R, Revets D, Kuehn A, Engrola S, Rodrigues PM. Fish Processing and Digestion Affect Parvalbumins Detectability in Gilthead Seabream and European Seabass. Animals (Basel) 2022; 12:ani12213022. [PMID: 36359146 PMCID: PMC9654892 DOI: 10.3390/ani12213022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Consumption of aquatic food, including fish, accounts for 17% of animal protein intake. However, fish consumption might also result in several side-effects such as sneezing, swelling and anaphylaxis in sensitized consumers. Fish allergy is an immune reaction to allergenic proteins in the fish muscle, for instance parvalbumin (PV), considered the major fish allergen. In this study, we characterize PV in two economically important fish species for southern European aquaculture, namely gilthead seabream and European seabass, to understand its stability during in vitro digestion and fish processing. This information is crucial for future studies on the allergenicity of processed fish products. PVs were extracted from fish muscles, identified by mass spectrometry (MS), and detected by sandwich enzyme-linked immunosorbent assay (ELISA) after simulated digestion and various food processing treatments. Secondary structures were determined by circular dichroism (CD) after purification by anion exchange and gel filtration chromatography. In both species, PVs presented as α-helical and β-sheet structures, at room temperature, were shown to unfold at boiling temperatures. In European seabass, PV detectability decreased during the simulated digestion and after 240 min (intestinal phase) no detection was observed, while steaming showed a decrease (p < 0.05) in PVs detectability in comparison to raw muscle samples, for both species. Additionally, freezing (−20 °C) for up to 12 months continued to reduce the detectability of PV in tested processing techniques. We concluded that PVs from both species are susceptible to digestion and processing techniques such as steaming and freezing. Our study obtained preliminary results for further research on the allergenic potential of PV after digestion and processing.
Collapse
Affiliation(s)
- Denise Schrama
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Departamento de Ciências do Mar, da Terra e do Ambiente, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Cláudia Raposo de Magalhães
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Departamento de Ciências do Mar, da Terra e do Ambiente, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Marco Cerqueira
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Raquel Carrilho
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Departamento de Ciências do Mar, da Terra e do Ambiente, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Dominique Revets
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, 29, Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Sofia Engrola
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Pedro M. Rodrigues
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence:
| |
Collapse
|
14
|
Herman RA, Zhang JXQ. Simulated gastric fluid assay for estimating the digestibility of newly expressed proteins in GE crops: Missteps in development and interpretation. Food Chem Toxicol 2022; 169:113436. [PMID: 36165819 DOI: 10.1016/j.fct.2022.113436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
Abstract
Digestive stability of a food protein in simulated gastric fluid (SGF) continues to be considered a risk factor for allergy, even though the current science does not support this belief. Methodological shortcomings of the adaption of the SGF assay for use with purified proteins has been cited as a reason to discount results that do not conform to this belief. Missteps in conducting and interpreting the results of SGF assays are reviewed here. However, these methodological shortcomings do not invalidate the conclusion that allergenic proteins are not systematically more stable to digestion than non-allergens. The growing evidence for the dual allergen exposure hypothesis, whereby sensitization to food allergens is primarily caused by dermal and inhalation exposure to food dust, and tolerization against food allergy is primarily induced by gut exposure in food, likely explains why the digestive stability of a protein is not a risk factor for allergenicity.
Collapse
Affiliation(s)
- Rod A Herman
- Corteva Agriscience, Regulatory and Stewardship, Indianapolis, IN, 46268, USA.
| | - John X Q Zhang
- Corteva Agriscience, Regulatory and Stewardship, Johnston, IA, USA
| |
Collapse
|
15
|
Liu Q, Lin S, Sun N. How does food matrix components affect food allergies, food allergens and the detection of food allergens? A systematic review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Fu W, Chen C, Xie Q, Gu S, Tao S, Xue W. Pediococcus acidilactici Strain Alleviates Gluten-Induced Food Allergy and Regulates Gut Microbiota in Mice. Front Cell Infect Microbiol 2022; 12:845142. [PMID: 35531345 PMCID: PMC9072736 DOI: 10.3389/fcimb.2022.845142] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Wheat flour, the most important source of food globally, is also one of the most common causative agents of food allergy. Wheat gluten protein, which accounts for 80% of the total wheat protein, is a major determinant of important wheat-related disorders. In this study, the effects of Pediococcus acidilactici XZ31 against gluten-induced allergy were investigated in a mouse model. The oral administration of P. acidilactici XZ31 attenuated clinical and intestinal allergic responses in allergic mice. Further results showed that P. acidilactici XZ31 regulated Th1/Th2 immune balance toward Th1 polarization, which subsequently induced a reduction in gluten-specific IgE production. We also found that P. acidilactici XZ31 modulated gut microbiota homeostasis by balancing the Firmicutes/Bacteroidetes ratio and increasing bacterial diversity and the abundance of butyrate-producing bacteria. Specifically, the abundance of Firmicutes and Erysipelotrichaceae is positively correlated with concentrations of gluten-specific IgE and may act as a fecal biomarker for diagnosis. The evidence for the role of P. acidilactici XZ31 in alleviating gluten-induced allergic responses sheds light on the application of P. acidilactici XZ31 in treating wheat allergy.
Collapse
Affiliation(s)
- Wenhui Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chen Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiang Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shimin Gu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Sha Tao
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Wentong Xue, ;
| |
Collapse
|
17
|
Chen WM, Shao YH, Wang Z, Liu J, Tu ZC. Simulated in vitro digestion of α-lactalbumin modified by phosphorylation: Detection of digestive products and allergenicity. Food Chem 2022; 372:131308. [PMID: 34655828 DOI: 10.1016/j.foodchem.2021.131308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 11/04/2022]
Abstract
The effects of phosphorylation on the allergenicity of bovine α-lactalbumin (BLA) and digestive products were studied in vitro digestion. Two components with different molecular weight and conformation were obtained from natural and phosphorylated BLA. In vivo and in vitro assessment of allergenicity showed that phosphorylation prior to digestion significantly decreased the IgE/IgG binding capacity and allergic response in KU812 cells, and reduced the levels of IgG, IgE, IL-4 and histamine, with an increase in IFN-γ levels in mouse serum, depending on the changes in BLA structures, producing numerous small peptides. There were four phosphorylated sites (S22, T29, S47 and S70) in the high molecular weight components of phosphorylated BLA after digestion. These phosphorylated sites could mask the linear epitopes of digestive products, resulting in reduced allergic activity. Phosphorylation prior to digestion of dairy products can reduce the risk of anaphylaxis in patients with milk allergy to some extent.
Collapse
Affiliation(s)
- Wen-Mei Chen
- National R & D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yan-Hong Shao
- National R & D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zhi Wang
- National R & D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jun Liu
- National R & D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Zong-Cai Tu
- National R & D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
18
|
Zhao J, Li Y, Xu L, Ji Y, Zeng J, Timira V, Zhang Z, Chen G, Lin H, Li Z. Insight into IgG/IgE binding ability, in vitro digestibility and structural changes of shrimp (Litopenaeus vannamei) soluble extracts with thermal processing. Food Chem 2022; 381:132177. [PMID: 35121318 DOI: 10.1016/j.foodchem.2022.132177] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/27/2021] [Accepted: 01/14/2022] [Indexed: 11/20/2022]
Abstract
The effects of six kinds of thermal processing on soluble protein recovery, potential allergenicity, in vitro digestibility and structural characteristics of shrimp soluble proteins were evaluated. Obtained results confirmed soluble protein recovery and IgG/IgE reactivity of shrimp soluble extracts were markedly suppressed by various thermal treatments with enhanced digestibility depended on the extent and type of heating applied, which correlated well with the structural alterations and modification. The maximum reduction of IgG/IgE-binding capacity and digestive stability were observed in the autoclaved shrimps because of unfolding of protein and hydrophobic residues exposed. Notably, tropomyosin (TM) and sarcoplasmic calcium-binding protein (SCP) were still IgG/IgE-reactive in various heat-processed shrimps, even higher IgG reactivity were found in heat-treated shrimps TM according to TM antiserum western-blotting and indirect ELISA results. Shrimp TM and SCP maintains its IgE/IgG-binding capacity after various cooking methods, thus most probably initiating allergic sensitization to both raw and cooked shrimps.
Collapse
Affiliation(s)
- Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Yonghong Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China; HOB Biotech Group Corp., Ltd., No. 218, Xinghu Road, Suzhou City, Jiangsu Province 215000, PR China
| | - Lili Xu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Yu Ji
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, No.16, Jiangsu Road, Qingdao City, Shandong Province 266071, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China.
| |
Collapse
|
19
|
Gazme B, Rezaei K, Udenigwe CC. Epitope mapping and the effects of various factors on the immunoreactivity of main allergens in egg white. Food Funct 2022; 13:38-51. [PMID: 34908097 DOI: 10.1039/d1fo01867a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Egg white has high protein content and numerous biological/functional properties. However, reported allergenicity for some of the proteins in egg white is an issue that needs to be paid exclusive attention. A consideration of the structure of IgE epitopes and their sequences, as well as a comprehensive understanding of the effects of various processes on epitopes and the impact of the gastrointestinal tract on them, can help target such issues. The current study focuses on the identified IgE epitopes in egg white proteins and evaluation of the effects of the gastrointestinal digestion, carbohydrate moiety, food matrix, microbial fermentation, recombinant allergen, heat treatment, Maillard reaction and combination of various processes and gastrointestinal digestion on egg white allergenicity. Although the gastrointestinal tract reduces the immunoreactivity of native egg white proteins, some of the IgE epitope-containing fragments remain intact during the digestion process. It has been found that the gastrointestinal tract can have both positive and negative impacts on the IgE binding activities of egg white proteins. Elimination of the carbohydrate moiety leads to a reduction in the immunoreactivity of ovalbumin. But, such effects from the carbohydrate parts in the IgE binding activity need to be explored further. In addition, the interaction between the egg white proteins and the food matrix leads to various effects from the gastrointestinal tract on the digestion of egg white proteins and their subsequent immunoreactivity. Further on this matter, studies have shown that both microbial fermentation and Maillard reaction can reduce the IgE binding activities of egg white proteins. Also, as an alternate approach, the thermal process can be used to treat the egg white proteins, which may result in the reduction or increase in their IgE binding activities depending on the conditions used in the process. Overall, based on the reported data, the allergenicity levels of egg white proteins can be mitigated or escalated depending on the conditions applied in the processing of the food products containing egg white. So far, no practical solutions have been reported to eliminate such allergenicity.
Collapse
Affiliation(s)
- Behzad Gazme
- Department of Food Science, Engineering, and Technology, University of Tehran, 31587-77871 Karaj, Iran.
| | - Karamatollah Rezaei
- Department of Food Science, Engineering, and Technology, University of Tehran, 31587-77871 Karaj, Iran.
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, 415 Smyth Road, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada. .,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
20
|
The role of dietary proteins and carbohydrates in gut microbiome composition and activity: A review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106911] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Effect of processing technologies on the digestibility of egg proteins. Compr Rev Food Sci Food Saf 2021; 20:4703-4738. [PMID: 34355496 DOI: 10.1111/1541-4337.12805] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/06/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
Egg and egg products are a rich source of highly bioavailable animal proteins. Several processing technologies can affect the structural and functional properties of these proteins differently and can influence their fate inside the gastrointestinal tract. The present review examines some of the processing technologies for improving egg protein digestibility and discusses how different processing conditions affect the digestibility of egg proteins under gastrointestinal digestion environments. To provide up-to-date information, most of the studies included in this review have been published in the last 5 years on different aspects of egg protein digestibility. Digestibility of egg proteins can be improved by employing some processing technologies that are able to improve the susceptibility of egg proteins to gastrointestinal proteases. Processing technologies, such as pulsed electric field, high-pressure, and ultrasound, can induce conformational and microstructural changes that lead to unfolding of the polypeptides and expose active sites for further interactions. These changes can enhance the accessibility of digestive proteases to cleavage sites. Some of these technologies may inactivate some egg proteins that are enzyme inhibitors, such as trypsin inhibitors. The underlying mechanisms of how different technologies mediate the egg protein digestibility have been discussed in detail. The proteolysis patterns and digestibility of the processed egg proteins are not always predictable and depends on the processing conditions. Empirical input is required to tailor the optimization of processing conditions for favorable effects on protein digestibility.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, Jammu and Kashmir, India
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | | | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, Jammu and Kashmir, India
| | - Hina F Bhat
- Division of Biotechnology, SKUAST of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
22
|
Abstract
Nuts are considered healthy foods due to their high content of nutritional compounds with functional properties. However, the list of the most allergenic foods includes tree nuts, and their presence must be indicated on food labels. Most nut allergens are seed storage proteins, pathogenesis-related (PR) proteins, profilins and lipid transfer proteins (LTP). Nut allergenic proteins are characterized by their resistance to denaturation and proteolysis. Food processing has been proposed as the method of choice to alter the allergenicity of foods to ensure their safety and improve their organoleptic properties. The effect of processing on allergenicity is variable by abolishing existing epitopes or generating neoallergens. The alterations depend on the intrinsic characteristics of the protein and the type and duration of treatment. Many studies have evaluated the molecular changes induced by processes such as thermal, pressure or enzymatic treatments. As some processing treatments have been shown to decrease the allergenicity of certain foods, food processing may play an important role in developing hypoallergenic foods and using them for food tolerance induction. This work provides an updated overview of the applications and influence of several processing techniques (thermal, pressure and enzymatic digestion) on nut allergenicity for nuts, namely, hazelnuts, cashews, pistachios, almonds and walnuts.
Collapse
|
23
|
Ukleja-Sokołowska N, Żbikowska-Gotz M, Lis K, Adamczak R, Bartuzi Z. Assessment of TSLP, IL 25 and IL 33 in patients with shrimp allergy. Allergy Asthma Clin Immunol 2021; 17:76. [PMID: 34301307 PMCID: PMC8299623 DOI: 10.1186/s13223-021-00576-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/11/2021] [Indexed: 12/02/2022] Open
Abstract
Background Shrimp allergy is a growing problem among the European population. TSLP, IL-25 and IL-33 are involved in the pathophysiology of allergic diseases, including asthma and atopic dermatitis, as they activate the Th2-dependent immune response. Methods Thirty-seven patients (18 male and 19 female) with a positive history of symptoms associated with shrimp consumption were selected. All patients had blood samples taken to assess the concentration of allergen-specific IgE (sIgE) to house dust mites (HDM) and shrimp (Singleplex, quantitative method with cut off value > 0,35 kAU/L) as well as the level of allergen components using the ImmunoCap ISAC method (Microarray test, semi-quantitative with cut off value > 0,3 ISU-E). The concentrations of TSLP, IL-25 and IL-33 in the patients’ blood serum was assessed using the ELISA method (Cusabio). Twenty patients with negative allergy history of allergic disease tests were included in the control group. Results Among the 37 shrimp-allergic patients, ImmunoCap ISAC was identified the presence of sIgE to the available shrimp allergen components in only 14 cases (37.8%). TSLP and IL25 levels were significantly higher in the study group. No statistically significant correlation was found between the concentration of analyzed alarmins and the concentration of sIgE level to shrimp or HDM between the study and control groups. No statistically significant correlation was found between poly-sensitization occurring in patients and levels of TSLP, IL-25 and IL-33 . Conclusion In shrimp-allergic patients, the concentrations of TSLP and IL-25 were significantly higher than in the control group (1.33 vs. 0.49 and 157 vs. 39.36, respectively). There was no correlation between the concentrations of TSLP, IL-25 and IL-33 and the concentration of sIgE in the patients or the number of allergen components that the patients were sensitized to. Trial registration: Bioethics Committee 147/2015, 11.03.2015. Supplementary Information The online version contains supplementary material available at 10.1186/s13223-021-00576-9.
Collapse
Affiliation(s)
- Natalia Ukleja-Sokołowska
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Ujejskiego 75, 85-168, Bydgoszcz, Poland.
| | - Magdalena Żbikowska-Gotz
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Ujejskiego 75, 85-168, Bydgoszcz, Poland
| | - Kinga Lis
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Ujejskiego 75, 85-168, Bydgoszcz, Poland
| | - Rafał Adamczak
- Department of Obstetrics and Gynecology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Ujejskiego 75, 85-168, Bydgoszcz, Poland
| |
Collapse
|
24
|
Affonfere M, Chadare FJ, Fassinou FTK, Linnemann AR, Duodu KG. In-vitro Digestibility Methods and Factors Affecting Minerals Bioavailability: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Marius Affonfere
- Laboratoire De Sciences Et Technologie Des Aliments Et Bio-ressources Et De Nutrition Humaine, Centre Universitaire De Sakété, Université Nationale d’Agriculture, Sakété, République Du Bénin
- Laboratory of Food Science, Faculty of Agronomic Science, University of Abomey-Calavi, Jéricho, Cotonou
| | - Flora Josiane Chadare
- Laboratoire De Sciences Et Technologie Des Aliments Et Bio-ressources Et De Nutrition Humaine, Centre Universitaire De Sakété, Université Nationale d’Agriculture, Sakété, République Du Bénin
- Laboratory of Food Science, Faculty of Agronomic Science, University of Abomey-Calavi, Jéricho, Cotonou
| | - Finagnon Toyi Kévin Fassinou
- Laboratoire De Sciences Et Technologie Des Aliments Et Bio-ressources Et De Nutrition Humaine, Centre Universitaire De Sakété, Université Nationale d’Agriculture, Sakété, République Du Bénin
- Laboratory of Food Science, Faculty of Agronomic Science, University of Abomey-Calavi, Jéricho, Cotonou
| | - Anita Rachel Linnemann
- Food Quality and Design, (FQD/WUR), Wageningen University and Research, Wageningen, The Netherlands
| | - Kwaku Gyebi Duodu
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
25
|
De Marchi L, Mainente F, Leonardi M, Scheurer S, Wangorsch A, Mahler V, Pilolli R, Sorio D, Zoccatelli G. Allergenicity assessment of the edible cricket Acheta domesticus in terms of thermal and gastrointestinal processing and IgE cross-reactivity with shrimp. Food Chem 2021; 359:129878. [PMID: 33934031 DOI: 10.1016/j.foodchem.2021.129878] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
The allergenic potency of the cricket Acheta domesticus, a promising edible insect, has never been assessed. This work aims to study the immunoreactivity of Acheta domesticus, and its cross-reactivity with the shrimp Litopenaeus vannamei, assessing the effect of cooking and gastrointestinal digestion on their allergenic properties. Different cricket proteins were detected by immunoblotting with shrimp-allergic patients' sera. Tropomyosin was identified as the most relevant IgE-binding protein, and its cross-reactivity with shrimp tropomyosin was demonstrated by ELISA. While shrimp tropomyosin showed scarce stability to gastric digestion, cricket tropomyosin withstood the whole digestion process. The sarcoplasmic calcium-binding protein, specifically detected in shrimp, showed exceptional stability to gastrointestinal digestion. IgE-binding proteins in a model of enriched baked products were partially protected from proteolysis. In conclusion, the ingestion of A. domesticus proteins poses serious concerns to the Crustacean-allergic population. The high stability of tropomyosin may represent a risk of primary sensitization and clinical cross-reactivity.
Collapse
Affiliation(s)
- Laura De Marchi
- University of Verona, Department of Biotechnology, Verona, Italy
| | | | - Massimo Leonardi
- University of Verona, Department of Biotechnology, Verona, Italy
| | | | | | - Vera Mahler
- Paul-Ehrlich-Institut, Division of Allergology, Langen, Germany; Allergy Unit, Dept. of Dermatology, University Hospital Erlangen, Medical Faculty, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Rosa Pilolli
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy
| | - Daniela Sorio
- University of Verona, Department of Biotechnology, Verona, Italy
| | | |
Collapse
|
26
|
Potato Industry By-Products as a Source of Protein with Beneficial Nutritional, Functional, Health-Promoting and Antimicrobial Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083497] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Most potato proteins are fractions of albumin and globulin, soluble in water and in water and salt solutions, respectively; these are patatin glycoproteins, with a pIs in the range of 4.8–5.2. This group of proteins is typical of potato and they are referred to as patatin or tuberin. Around 30–50% of soluble potato proteins comprise numerous fractions of protease inhibitors with a molecular weight in the range of 7–21 kDa; they are often heat-resistant, showing a wide spectrum of health-promoting effects. The nutritional value of proteins is related to the content of amino acids, their mutual proportions and digestibility. Natural proteins of the patatin fraction are characterized by favorable functional properties, including foam formation and stabilization, fat emulsification or gelling. Native potato proteins may also exhibit beneficial non-food properties, such as antimicrobial or antitumor, as well as antioxidant and antiradical. Depending on the method of isolation and the applied factors, such as pH, ionic strength and temperature, the directions of using potato protein preparations will be different.
Collapse
|
27
|
Zhao Y, Naren G, Qiang J, Qin G, Bao N, Farouk MH. Identification of Allergic Epitopes of Soybean β-Conglycinin in Different Animal Species. Front Vet Sci 2021; 7:599546. [PMID: 33490132 PMCID: PMC7820328 DOI: 10.3389/fvets.2020.599546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/26/2020] [Indexed: 01/08/2023] Open
Abstract
Soybean can cause allergy in both humans and animals. The herein study aims to identify the antigenic determinants (epitopes) of β-conglycinin that lead to allergy in different animal species (swine, bovine, and rats). The epitopes of β-conglycinin were identified through co-immunoprecipitation and mass spectrometry. The binding abilities of seven identified epitope peptides to allergic sera of three animal species were compared by ELISA and dot-blot techniques. Some epitope peptides could be recognized by the three animal allergic sera, while most epitopes showed some differences in binding abilities to the different animal sera. The strongest reaction using swine sera was detected with peptides α2, β2, and β3, but the biggest sensitive regions for bovine and rats were peptides α2, β1, and β4. Most epitopes of β-conglycinin exhibited different binding abilities to the three animal sera, in which the biggest sensitive regions were peptides α2, β2, and β3 for swine, but peptides α2, β1, and β4 were detected for bovine and rats.
Collapse
Affiliation(s)
- Yuan Zhao
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Lab of Animal Production, Product Quality and Security, College of Animal Science and Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gaowa Naren
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Lab of Animal Production, Product Quality and Security, College of Animal Science and Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jianan Qiang
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Lab of Animal Production, Product Quality and Security, College of Animal Science and Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guixin Qin
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Lab of Animal Production, Product Quality and Security, College of Animal Science and Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Bao
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Lab of Animal Production, Product Quality and Security, College of Animal Science and Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Mohammed Hamdy Farouk
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
28
|
Mennah-Govela YA, Bornhorst GM. Food buffering capacity: quantification methods and its importance in digestion and health. Food Funct 2021; 12:543-563. [DOI: 10.1039/d0fo02415e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the influence of food properties on buffering capacity will have an impact on gastric secretions and breakdown during digestion.
Collapse
Affiliation(s)
- Yamile A. Mennah-Govela
- Department. of Biological and Agricultural Engineering
- 1308 Bainer Hall
- University of California
- Davis
- Davis
| | - Gail M. Bornhorst
- Department. of Biological and Agricultural Engineering
- 1308 Bainer Hall
- University of California
- Davis
- Davis
| |
Collapse
|
29
|
Comparison of digestibility and potential allergenicity of raw shrimp (Litopenaeus vannamei) extracts in static and dynamic digestion systems. Food Chem 2020; 345:128831. [PMID: 33326890 DOI: 10.1016/j.foodchem.2020.128831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/10/2020] [Accepted: 12/03/2020] [Indexed: 11/23/2022]
Abstract
In this work, a simplified dynamic digestion system was developed, and used for comparing the digestibility and potential allergenicity of raw shrimp extracts (RSE) in static and dynamic digestion systems. Protein hydrolysis was analyzed by electrophoresis, and the potential allergenicity was reflected in IgG/IgE binding ability and activation of basophils. In comparison with static digestion, protein hydrolysis indicated different kinetic behaviors, especially tropomyosin (TM) showed better digestion stability during dynamic digestion. The potential allergenicity of RSE exhibited different changing trends with digestion in the two systems. However, the apparent molecular weight (Mw) of immune fragments (>11 kDa) showed good approximation, and the IgE-binding fragment near 70 kDa revealed outstanding digestion stability than primordial protein in both systems. In conclusion, the dynamic conditions had a significant impact on the assessment of the persistence and potential allergenicity of digestion-resistant allergens, while the apparent Mw of IgG/IgE binding hydrolysate was not affected.
Collapse
|
30
|
Mapping and IgE-binding capacity analysis of heat/digested stable epitopes of mud crab allergens. Food Chem 2020; 344:128735. [PMID: 33279350 DOI: 10.1016/j.foodchem.2020.128735] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/09/2020] [Accepted: 11/22/2020] [Indexed: 12/31/2022]
Abstract
Mud crab (Scylla paramamosain) is widely consumed after thermal processing. It is necessary to comprehensively evaluate of the allergenic potential and epitopes of allergens in high temperature-pressure (HTP) treated S. paramamosain. Tropomyosin and arginine kinase presented higher prevalence (30.77% and 42.13%) than the other three important crab allergens by component-resolved diagnosis. The surface expression of basophils CD63 and CD203c were decreased in HTP treated crab, an effect that was even more evident after digestion and absorption by the intestinal Caco-2 cell model. Of the 35 stable epitope, six were for the first time identified in shellfish. Seven heat/digested stable peptides of tropomyosin retained IgE-binding capacity and were shown to interact with MHC-II. Five epitopes (amino acids 19-29, 99-109, 153-162, 170-188 and 211-221) were the first identified in crab. The study provides insight into prevention and therapy of crab allergy, as well as helps to reduce crab allergenicity during thermal processing.
Collapse
|
31
|
Rodrigues RM, Avelar Z, Machado L, Pereira RN, Vicente AA. Electric field effects on proteins - Novel perspectives on food and potential health implications. Food Res Int 2020; 137:109709. [PMID: 33233283 DOI: 10.1016/j.foodres.2020.109709] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/22/2020] [Accepted: 09/06/2020] [Indexed: 12/29/2022]
Abstract
Electric fields (EF) technologies have been establishing a solid position in emergent food processing and have seen as serious alternatives to traditional thermal processing. During the last decades, research has been devoted to elucidation of technological and safety issues but also fundamental aspects related with interaction of electric fields (EF) with important macromolecules, such as proteins. Proteins are building blocks for the development of functional networks that can encompass health benefits (i.e. nutritional and bioactive properties) but may be also linked with adverse effects such as neurodegenerative diseases (amyloid fibrils) and immunological responses. The biological function of a protein depends on its tridimensional structure/conformation, and latest research evidences that EF can promote disturbances on protein conformation, change their unfolding mechanisms, aggregation and interaction patterns. This review aims at bringing together these recent findings as well as providing novel perspectives about how EF can shape the behavior of proteins towards the development of innovative foods, aiming at consumers' health and wellbeing.
Collapse
Affiliation(s)
- Rui M Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Zita Avelar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Luís Machado
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Ricardo N Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - António A Vicente
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
32
|
Visentini FF, Perez AA, Baravalle ME, Renna MS, Ortega HH, Santiago LG. In vitro gastrointestinal digestion and cytotoxic effect of ovalbumin-conjugated linoleic acid nanocomplexes. Food Res Int 2020; 137:109381. [PMID: 33233083 DOI: 10.1016/j.foodres.2020.109381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 01/04/2023]
Abstract
The aim of this work was to examine the behavior of conjugated linoleic acid (CLA) delivery systems based on ovalbumin (OVA) and their derived nanoparticles (OVAn1 and OVAn2), under static in vitro gastrointestinal digestion model. In addition, potential cytotoxic effect of these inclusion complexes on a human colon cancer cell line (HT-29) was evaluated. OVA was resistant to gastric and intestinal digestion, while OVA nanoparticles were very susceptible to digestive enzymes hydrolysis. Particle size distribution (PDS) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for OVA evidenced the presence of a protein fragment of similar size after simulated digestive process. Conversely, for nanoparticles, partial and total hydrolysis in gastric and intestinal phases, respectively, was evidenced. After in vitro gastrointestinal digestion, released CLA (RCLA) was assayed. In case of OVA, as CLA carrier, RCLA was 37%, while for OVA nanoparticles, lower RCLA values (~10-20%) were obtained. From cytotoxic assays, it was observed that CLA molecule was responsible for cell death, whereas OVA or their derived nanoparticles were not cytotoxic on HT-29 cells. On the other hand, flow cytometry analysis revealed that main death mechanism for CLA, and their inclusion complexes was apoptosis. OVA-CLA and OVAn1-CLA inclusion complexes displayed the highest potential cytotoxic activity and apoptotic index. Information derived from this work could be relevant for the design of CLA delivery systems as promising nanosupplements for production of new functional and excipient foods for both prevention and control of colon cancer.
Collapse
Affiliation(s)
- Flavia F Visentini
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, CONICET, Argentina; Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, 1 de Mayo 3250, Santa Fe 3000, Argentina
| | - Adrián A Perez
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, CONICET, Argentina; Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, 1 de Mayo 3250, Santa Fe 3000, Argentina
| | - María E Baravalle
- Centro de Medicina Comparada, Instituto de Ciencias Veterinarias del Litoral (ICiVet Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), R.P. Kreder 2805, Esperanza 3080, Argentina
| | - María S Renna
- Centro de Medicina Comparada, Instituto de Ciencias Veterinarias del Litoral (ICiVet Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), R.P. Kreder 2805, Esperanza 3080, Argentina
| | - Hugo H Ortega
- Centro de Medicina Comparada, Instituto de Ciencias Veterinarias del Litoral (ICiVet Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), R.P. Kreder 2805, Esperanza 3080, Argentina
| | - Liliana G Santiago
- Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, 1 de Mayo 3250, Santa Fe 3000, Argentina.
| |
Collapse
|
33
|
Parisi K, Poon S, Renda RF, Sahota G, English J, Yalpani N, Bleackley MR, Anderson MA, van der Weerden NL. Improving the Digestibility of Plant Defensins to Meet Regulatory Requirements for Transgene Products in Crop Protection. FRONTIERS IN PLANT SCIENCE 2020; 11:1227. [PMID: 32922418 PMCID: PMC7456892 DOI: 10.3389/fpls.2020.01227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/27/2020] [Indexed: 06/01/2023]
Abstract
Despite the use of chemical fungicides, fungal diseases have a major impact on the yield and quality of plant produce globally and hence there is a need for new approaches for disease control. Several groups have examined the potential use of antifungal plant defensins for plant protection and have produced transgenic plants expressing plant defensins with enhanced resistance to fungal disease. However, before they can be developed commercially, transgenic plants must pass a series of strict regulations to ensure that they are safe for human and animal consumption as well as the environment. One of the requirements is rapid digestion of the transgene protein in the gastrointestinal tract to minimize the risk of any potential allergic response. Here, we examine the digestibility of two plant defensins, NaD1 from Nicotiana alata and SBI6 from soybean, which have potent antifungal activity against major cereal pathogens. The native defensins were not digestible in simulated gastrointestinal fluid assays. Several modifications to the sequences enhanced the digestibility of the two small proteins without severely impacting their antifungal activity. However, these modified proteins did not accumulate as well as the native proteins when transiently expressed in planta, suggesting that the protease-resistant structure of plant defensins facilitates their stability in planta.
Collapse
Affiliation(s)
- Kathy Parisi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Simon Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Rosemary F. Renda
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Gurinder Sahota
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - James English
- Maxygen LLC, Sunnyvale, CA, United States
- Corteva Agriscience, Agriculture Division of DowDuPont, Johnston, IA, United States
| | - Nasser Yalpani
- Corteva Agriscience, Agriculture Division of DowDuPont, Johnston, IA, United States
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Mark R. Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Marilyn A. Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| | - Nicole L. van der Weerden
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, VIC, Australia
| |
Collapse
|
34
|
Predictive Consumer Acceptance Models and Quality Attributes for Cookies Enriched with Potato Protein Isolate and Concentrate. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02508-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Bernard H, Turner PJ, Ah-Leung S, Ruiz-Garcia M, Clare Mills EN, Adel-Patient K. Circulating Ara h 6 as a marker of peanut protein absorption in tolerant and allergic humans following ingestion of peanut-containing foods. Clin Exp Allergy 2020; 50:1093-1102. [PMID: 32648641 DOI: 10.1111/cea.13706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/30/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bioaccessibility of food allergens may be a key determinant of allergic reactions. OBJECTIVE To develop a protocol allowing the detection of the major peanut allergen, Ara h 6, in the bloodstream following ingestion of low amounts of peanut and to compare Ara h 6 bioaccessibility by food matrix. We further assessed for differences in absorption in healthy versus peanut-allergic volunteers. METHODS A blood pretreatment combining acidic shock and thermal treatment was developed. This protocol was then applied to blood samples collected from human volunteers (n = 6, healthy controls; n = 14, peanut-allergic patients) at various time-points following ingestion of increasing levels of peanut incurred in different food matrices (cookies, peanut butter and chocolate dessert). Immunodetection was performed using an in-house immunoassay. RESULTS An original pretreatment protocol was optimized, resulting in irreversible dissociation of human antibodies-Ara h 6 immune complex, thus rendering Ara h 6 accessible for its immunodetection. Ara h 6 was detected in samples from all volunteers following ingestion of 300-1000 mg peanut protein, although variations in the kinetics of passage were observed between individuals and matrices. Interestingly, in peanut-allergic subjects, Ara h 6 could be detected following ingestion of lower doses and at higher concentrations than in non-allergic volunteers. CONCLUSIONS AND CLINICAL RELEVANCE The kinetics and intensity of Ara h 6 passage in bloodstream depend on both individual and food matrix. Peanut-allergic patients appear to demonstrate higher absorption rate, the clinical significance of which warrants further evaluation.
Collapse
Affiliation(s)
- Hervé Bernard
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS)/ Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Paul J Turner
- Section of Inflammation, Repair & Development, National Heart & Lung Institute, Imperial College London, London, UK
| | - Sandrine Ah-Leung
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS)/ Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Monica Ruiz-Garcia
- Section of Inflammation, Repair & Development, National Heart & Lung Institute, Imperial College London, London, UK
| | - Elizabeth Naomi Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences and Manchester Institute of Biotechnology, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Karine Adel-Patient
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS)/ Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
36
|
Pecoraro L, Tenero L, Pietrobelli A, Dalle Carbonare L, Czernin S, Widhalm K, Alvarez-Perea A, Piacentini G. Canned tuna tolerance in children with IgE-mediated fish allergy: an allergological and nutritional view. Minerva Pediatr 2020; 72:408-415. [PMID: 32686923 DOI: 10.23736/s0026-4946.20.05972-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Scientific research, diagnostic tools and clinical experience have shown that children suffering from IgE-mediated fish allergy do not need to follow a strict exclusion diet. In fact, they could tolerate some species of fish, which could be reintroduced in the diet by verifying their tolerance with an oral food challenge in a clinical setting. Consequently, it is possible to look a new insight on diagnosis and management of IgE-mediated fish allergy in children, considering the use of canned tuna in clinical settings. Authors performed a literature search through the Cochrane Library and Medline/PubMed databases. All quantitative and qualitative pediatric studies involving diagnosis and management of IgE-mediated fish allergy and the use of canned tuna in clinical settings were considered. Articles related to allergological and nutritional features of fish, and especially canned tuna, were selected. This research was conducted on May 2020. Canned tuna shows peculiar allergological and nutritional characteristics. Relating to allergy, canning process, characterized by cooking the fish under pressure for a time equal to about 7 hours, can lead a conformational change in parvalbumin, making it less allergenic. In terms of nutrition, canned tuna contains B, D and A vitamins and, above all, omega-3 fatty acids and shows a favourable and significantly sustainable nutritional profile. Lower allergenicity, adequate nutritional value and its rich availability in markets at reasonable costs, could make the use of canned tuna as a solution with an excellent risk/benefit ratio in the field of IgE-mediated fish allergy.
Collapse
Affiliation(s)
- Luca Pecoraro
- Department of Medicine, University of Verona, Verona, Italy - .,Clinic of Pediatric, ASST Mantova, Mantova, Italy -
| | - Laura Tenero
- , Division of Pediatric, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Angelo Pietrobelli
- , Division of Pediatric, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy.,Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | - Sarah Czernin
- Division of Nutrition and Metabolism, Department of Pediatrics, Austrian Academic Institute for Clinical Nutrition, Vienna, Austria
| | - Kurt Widhalm
- Division of Nutrition and Metabolism, Department of Pediatrics, Austrian Academic Institute for Clinical Nutrition, Vienna, Austria
| | | | - Giorgio Piacentini
- , Division of Pediatric, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| |
Collapse
|
37
|
Deng Y, Govers C, Tomassen M, Hettinga K, Wichers HJ. Heat treatment of β-lactoglobulin affects its digestion and translocation in the upper digestive tract. Food Chem 2020; 330:127184. [PMID: 32531635 DOI: 10.1016/j.foodchem.2020.127184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023]
Abstract
Heat treatment is a commonly applied unit operation in the processing of β-lactoglobulin containing products. This does, however, influence its structure and thereby impacts its activity and digestibility. We describe how various heat-treatments of β-lactoglobulin change the digestibility using a modified version of the current consensus INFOGEST protocol. Additionally, protein was investigated for its translocation over the intestinal epithelial barrier, which would bring them in contact with immune cells. The extent of gastric digestibility was higher when the protein structure was more modified, while the influence of glycation with lactose was limited. Translocation studies of protein across Caco-2 cell monolayers showed a lower translocation rate of protein heated in solution compared to the others. Our study indicates that structural modifications after different heat-treatments of β-lactoglobulin increase in particular gastric digestibility and the translocation efficiency across intestinal epithelial cells.
Collapse
Affiliation(s)
- Ying Deng
- Food and Biobased Research, Wageningen University and Research, P.O.Box 17, 6700 AA Wageningen, The Netherlands; Laboratory of Food Chemistry, Wageningen University and Research, Wageningen, The Netherlands
| | - Coen Govers
- Food and Biobased Research, Wageningen University and Research, P.O.Box 17, 6700 AA Wageningen, The Netherlands
| | - Monic Tomassen
- Food and Biobased Research, Wageningen University and Research, P.O.Box 17, 6700 AA Wageningen, The Netherlands
| | - Kasper Hettinga
- Food Quality and Design, Wageningen University and Research, Wageningen, The Netherlands
| | - Harry J Wichers
- Food and Biobased Research, Wageningen University and Research, P.O.Box 17, 6700 AA Wageningen, The Netherlands; Laboratory of Food Chemistry, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
38
|
Perry SL, McClements DJ. Recent Advances in Encapsulation, Protection, and Oral Delivery of Bioactive Proteins and Peptides using Colloidal Systems. Molecules 2020; 25:E1161. [PMID: 32150848 PMCID: PMC7179163 DOI: 10.3390/molecules25051161] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
There are many areas in medicine and industry where it would be advantageous to orally deliver bioactive proteins and peptides (BPPs), including ACE inhibitors, antimicrobials, antioxidants, hormones, enzymes, and vaccines. A major challenge in this area is that many BPPs degrade during storage of the product or during passage through the human gut, thereby losing their activity. Moreover, many BPPs have undesirable taste profiles (such as bitterness or astringency), which makes them unpleasant to consume. These challenges can often be overcome by encapsulating them within colloidal particles that protect them from any adverse conditions in their environment, but then release them at the desired site-of-action, which may be inside the gut or body. This article begins with a discussion of BPP characteristics and the hurdles involved in their delivery. It then highlights the characteristics of colloidal particles that can be manipulated to create effective BPP-delivery systems, including particle composition, size, and interfacial properties. The factors impacting the functional performance of colloidal delivery systems are then highlighted, including their loading capacity, encapsulation efficiency, protective properties, retention/release properties, and stability. Different kinds of colloidal delivery systems suitable for encapsulation of BPPs are then reviewed, such as microemulsions, emulsions, solid lipid particles, liposomes, and microgels. Finally, some examples of the use of colloidal delivery systems for delivery of specific BPPs are given, including hormones, enzymes, vaccines, antimicrobials, and ACE inhibitors. An emphasis is on the development of food-grade colloidal delivery systems, which could be used in functional or medical food applications. The knowledge presented should facilitate the design of more effective vehicles for the oral delivery of bioactive proteins and peptides.
Collapse
Affiliation(s)
- Sarah L. Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
| |
Collapse
|
39
|
Bu G, Huang T, Li T. The separation and identification of the residual antigenic fragments in soy protein hydrolysates. J Food Biochem 2020; 44:e13144. [PMID: 31910494 DOI: 10.1111/jfbc.13144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/14/2019] [Accepted: 12/18/2019] [Indexed: 11/27/2022]
Abstract
Soybean is one of the major food allergens. In this study, soy protein isolate was hydrolyzed by Neutrase and Flavourzyme. The hydrolysates were separated by ultrafiltration and ion-exchange chromatography. The antigenicity of proteins was determined by indirect competitive ELISA. The molecular weight distribution was characterized by SDS-PAGE. The amino acid sequence of chromatography fractions was analyzed by LC-MS. The results showed that proteins with >50 kDa in hydrolysates had the highest antigenicity and were further separated into F1 -F5 fragments by ion-exchange chromatography. Fragment F4 , which was the most antigenic, was analyzed by LC-MS. The results of mass spectrometry showed that most of the peptides that contained antigen epitopes in chromatography fraction F4 belonged to glycinin subunits. The antigenicity of soy protein was reduced by enzymatic hydrolysis, but glycinin showed resistance to enzymatic hydrolysis. PRACTICAL APPLICATIONS: The identification of residual antigenicity in soy protein hydrolysates by LC-MS provides important information on the resistance mechanism of enzymatic hydrolysis of soybean protein allergens. In addition, the efficient separation of soy protein hydrolysates could be beneficial for developing low-allergenic soybean products.
Collapse
Affiliation(s)
- Guanhao Bu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Ting Huang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Tanghao Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
40
|
Gazme B, Rezaei K, Udenigwe CC. Effect of enzyme immobilization and in vitro digestion on the immune-reactivity and sequence of IgE epitopes in egg white proteins. Food Funct 2020; 11:6632-6642. [DOI: 10.1039/d0fo00938e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Immune-reactivity reduction of egg white proteins by free and immobilized enzymes and determination of degraded IgE epitopes.
Collapse
Affiliation(s)
- Behzad Gazme
- Department of Food Science
- Engineering
- and Technology
- University of Tehran
- 31587-77871 Karaj
| | - Karamatollah Rezaei
- Department of Food Science
- Engineering
- and Technology
- University of Tehran
- 31587-77871 Karaj
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences
- Faculty of Health Sciences
- Ottawa
- Canada
- Department of Chemistry and Biomolecular Sciences
| |
Collapse
|
41
|
Luo C, Guo Y, Li Z, Ahmed I, Pramod SN, Gao X, Lv L, Lin H. Lipid emulsion enhances fish allergen parvalbumin’s resistance to in vitro digestion and IgG/IgE binding capacity. Food Chem 2020; 302:125333. [DOI: 10.1016/j.foodchem.2019.125333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
|
42
|
Bavaro SL, Orlando A, De Angelis E, Russo F, Monaci L. Investigation on the allergen profile of the soluble fraction of autoclaved peanuts and its interaction with Caco-2 cells. Food Funct 2019; 10:3615-3625. [PMID: 31162510 DOI: 10.1039/c9fo00309f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peanuts are a source of proteins and fats but they are also considered a harmful food for individuals who are allergic to them due to their ability to trigger severe and life-threatening reactions. Strict avoidance of peanuts is the most effective means to prevent the development of an allergic reaction. Physical or chemical strategies employing autoclaving can represent a valid alternative to produce a final food with a decreased allergenic power as in the case of peanuts. Thermal processing might induce protein modifications in foods and affect protein digestibility or absorption of nutrients across the intestinal mucosa. Besides, the type of processing could also alter food protein allergenicity thus influencing the interplay with the biological system at the gut level. In this paper, we investigated the influence of autoclaving based treatments on the proliferation of epithelial cells at the intestinal level. Extractable proteins of raw and autoclaved peanuts were analysed by SDS-PAGE and untargeted LC-high resolution-MS/MS to investigate the peptide composition. Our findings show that when raw peanuts were assayed on Caco 2 cell lines, an antiproliferative effect was observed. By contrast, peanuts subjected to hydration and autoclaving did not show an inhibition of proliferation on Caco-2 cells. In parallel, extensive fragmentation induced by autoclaving treatments on the original peanut proteins was also recorded by LC-MS/MS analysis with a consequent increase in the number of peptides detected. These results indicate that the processing applied to peanuts can have an influence on both the nutritional and allergological sides, and more investigations will be required on this issue to understand the alteration of inflammatory mediators induced by the treatment applied.
Collapse
Affiliation(s)
- Simona L Bavaro
- Institute of Sciences of Food Production, Italian National Research Council (ISPA-CNR), Via Amendola 122/O, 70126, Bari, Italy.
| | | | | | | | | |
Collapse
|
43
|
Effect of processing on the in vitro digestion characteristics of oat products by using a dynamic rat stomach-duodenum model. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Kyosaka I, Fujita S, Shimizu Y, Saeki H. Digestibility in the gastrointestinal tract and migration to blood of β'-component (Onk k 5), a major salmon roe IgE-binding protein. Food Chem 2019; 289:694-700. [PMID: 30955667 DOI: 10.1016/j.foodchem.2019.03.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 02/02/2023]
Abstract
The major allergen of chum salmon (Oncorhynchus keta) roe is the β'-component (Onc k 5, β'-c), which is a yolk protein and a fragment of vitellogenin. When yolk content containing β'-c was orally administered to mice, β'-c passed through the gastrointestinal tract and was excreted in feces without marked degradation. The direct administration of β'-c to ligated jejunal and ileal loops showed that β'-c was absorbed through the small intestine and transferred into the blood. Immunohistochemical staining showed that orally administered β'-c was distributed from the apical side to the basal side of intestinal epithelial cells, suggesting that endocytosis may be involved in the intestinal absorption of β'-c. In conclusion, β'-c is absorbed along a large portion of the small intestine and circulates in the blood stream without significant digestion. The resistance of β'-c to gastrointestinal digestion seems to contribute to its strong allergenicity.
Collapse
Affiliation(s)
- Issei Kyosaka
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Shingo Fujita
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Yutaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Hiroki Saeki
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
45
|
Claude M, Lupi R, Picariello G, Drouet M, Larré C, Denery-Papini S, Brossard C. Digestion differently affects the ability of native and thermally aggregated ovalbumin to trigger basophil activation. Food Res Int 2019; 118:108-114. [DOI: 10.1016/j.foodres.2017.11.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/13/2017] [Accepted: 11/19/2017] [Indexed: 01/01/2023]
|
46
|
Liu M, Liu SH, Han TJ, Xia F, Li MS, Weng WY, Chen GX, Cao MJ, Liu GM. Effects of thermal processing on digestion stability and immunoreactivity of the Litopenaeus vannamei matrix. Food Funct 2019; 10:5374-5385. [DOI: 10.1039/c9fo00971j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Many types of shellfish, including shrimp, are sometimes cooked before ingestion.
Collapse
Affiliation(s)
- Meng Liu
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Si-Han Liu
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Tian-Jiao Han
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Fei Xia
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Meng-Si Li
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Wu-Yin Weng
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University
- Xiamen
- China
| | - Min-Jie Cao
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Guang-Ming Liu
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| |
Collapse
|
47
|
Rao H, Tian Y, Fu W, Xue W. In vitro digestibility and immunoreactivity of thermally processed peanut. FOOD AGR IMMUNOL 2018. [DOI: 10.1080/09540105.2018.1499710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Huan Rao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Yang Tian
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Wenhui Fu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Wentong Xue
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
48
|
Sarkar MB, Sircar G, Ghosh N, Das AK, Jana K, Dasgupta A, Bhattacharya SG. Cari p 1, a Novel Polygalacturonase Allergen From Papaya Acting as Respiratory and Food Sensitizer. FRONTIERS IN PLANT SCIENCE 2018; 9:823. [PMID: 29967633 PMCID: PMC6016011 DOI: 10.3389/fpls.2018.00823] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/28/2018] [Indexed: 05/28/2023]
Abstract
Papaya has been reported to elicit IgE-mediated hypersensitivity via pollen inhalation and fruit consumption. Certain papaya sensitive patients with food allergy were found to experience recurrent respiratory distresses even after quitting the consumption of fruits. This observation prompted us to investigate the allergens commonly present in fruits and pollen grains of papaya. A discovery approach consisting of immunoproteomic detection followed by molecular characterization led to the identification of a novel papaya allergen designated as Cari p 1. This allergen was detected as a 56 kDa IgE-reactive protein from pollen as well as fruit proteome through serological analysis. The protein was identified as an endopolygalacturonase by tandem mass spectrometry. Full length Cari p 1 cDNA was isolated from papaya pollen, cloned in expression vector, and purified as recombinant allergen. The recombinant protein was monomeric and displayed pectinolytic activity. Recombinant Cari p 1 reacted with IgE-antibodies of all the papaya sensitized patient sera. In addition to IgE-reactivity, rCari p 1 displayed allergenic activity by stimulating histamine release from IgE-sensitized granulocytes. CD-spectroscopy of rCari p 1 revealed the presence of predominantly β-sheet characters. The melting curve of the allergen showed partial refolding from a fully denatured state indicating the possible presence of conformational IgE-epitopes characteristic of inhalant allergens in addition to the linear IgE-epitopes of food allergens. The expression of this allergen in papaya fruits was detected by immunoblot with anti-Cari p 1 rabbit IgG and reconfirmed by PCR. In an in vivo mouse model, rCari p 1 exhibited a comparable level of inflammatory responses in the lung and duodenum tissues explaining the dual role of Cari p 1 allergen in respiratory sensitization via pollen inhalation and sensitization of gut mucosa via fruit consumption. Purified rCari p 1 can be used a marker allergen for component-resolved molecular diagnosis. Further immunological studies on Cari p 1 are warranted to design immunotherapeutic vaccine for the clinical management of papaya allergy.
Collapse
Affiliation(s)
| | - Gaurab Sircar
- Division of Plant Biology, Bose Institute, Kolkata, India
| | - Nandini Ghosh
- Division of Plant Biology, Bose Institute, Kolkata, India
| | | | - Kuladip Jana
- Division of Molecular Medicines, Bose Institute, Kolkata, India
| | - Angira Dasgupta
- Chest Clinic, Department of Internal Medicine, B. R. Singh Hospital and Centre for Medical Education and Research, Kolkata, India
| | | |
Collapse
|
49
|
Liu YF, Oey I, Bremer P, Silcock P, Carne A. Proteolytic pattern, protein breakdown and peptide production of ovomucin-depleted egg white processed with heat or pulsed electric fields at different pH. Food Res Int 2018; 108:465-474. [DOI: 10.1016/j.foodres.2018.03.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
|
50
|
Seafood allergy: A comprehensive review of fish and shellfish allergens. Mol Immunol 2018; 100:28-57. [PMID: 29858102 DOI: 10.1016/j.molimm.2018.04.008] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
Abstract
Seafood refers to several distinct groups of edible aquatic animals including fish, crustacean, and mollusc. The two invertebrate groups of crustacean and mollusc are, for culinary reasons, often combined as shellfish but belong to two very different phyla. The evolutionary and taxonomic diversity of the various consumed seafood species poses a challenge in the identification and characterisation of the major and minor allergens critical for reliable diagnostics and therapeutic treatments. Many allergenic proteins are very different between these groups; however, some pan-allergens, including parvalbumin, tropomyosin and arginine kinase, seem to induce immunological and clinical cross-reactivity. This extensive review details the advances in the bio-molecular characterisation of 20 allergenic proteins within the three distinct seafood groups; fish, crustacean and molluscs. Furthermore, the structural and biochemical properties of the major allergens are described to highlight the immunological and subsequent clinical cross-reactivities. A comprehensive list of purified and recombinant allergens is provided, and the applications of component-resolved diagnostics and current therapeutic developments are discussed.
Collapse
|