1
|
Sharma K, Shah J, Singh S, Sengupta S. Development of Amphotericin B Decorated Gold Nanoparticles as a Promising Antileishmanial Nanoconjugate. ACS APPLIED BIO MATERIALS 2024; 7:6239-6248. [PMID: 39155492 DOI: 10.1021/acsabm.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Leishmaniasis, attributed to the protozoan parasite Leishmania, manifests in diverse clinical forms, including cutaneous, mucocutaneous, and visceral leishmaniasis; VL constitutes a significant global health menace. Prevalent in tropical and subtropical regions, this affliction disproportionately impacts individuals below the poverty threshold, transmitted through the bite of female sandflies. Existing treatments, such as pentavalent antimony, miltefosine, and Amphotericin B, exhibit limitations. Despite the emergence of liposomal Amphotericin B (AmBisome) as a promising antileishmanial agent, its utility is impeded by adverse effects, elevated production expenses, and cytotoxicity. To address these challenges, our investigation introduces a potential remedy─a citrate-coated gold Amphotericin B nanoparticle formulation. Characterized using dynamic light scattering and transmission electron microscopy, this pioneering formulation exhibited efficacy against L. donovani Ag83 promastigotes as demonstrated by MTT cell viability testing. Evaluating internal reactive oxygen species (ROS) levels and dual staining with acridine orange and ethidium bromide unveiled its consequential impact on cell death. Significantly, our study discloses this novel nanoformulation's unprecedented inhibition of the trypanothione reductase enzyme. The findings posit the citrate-coated gold Amphotericin B nanoformulation as a promising and targeted antileishmanial agent, representing potential advancements in leishmaniasis therapeutics.
Collapse
Affiliation(s)
- Kikku Sharma
- Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Juhi Shah
- Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Sanjay Singh
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad - 500032, Telangana, India
| | - Souvik Sengupta
- Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009, India
| |
Collapse
|
2
|
|
3
|
Batista AS, Oliveira SDS, Pomel S, Commere PH, Mazan V, Lee M, Loiseau PM, Rossi-Bergmann B, Prina E, Duval R. Targeting chalcone binding sites in living Leishmania using a reversible fluorogenic benzochalcone probe. Biomed Pharmacother 2022; 149:112784. [PMID: 35299122 DOI: 10.1016/j.biopha.2022.112784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Chalcones (1,3-diphenyl-2-propen-1-ones) either natural or synthetic have a plethora of biological properties including antileishmanial activities, but their development as drugs is hampered by their largely unknown mechanisms of action. We demonstrate herein that our previously described benzochalcone fluorogenic probe (HAB) could be imaged by fluorescence microscopy in live Leishmania amazonensis promastigotes where it targeted the parasite acidocalcisomes, lysosomes and the mitochondrion. As in the live zebrafish model, HAB formed yellow-emitting fluorescent complexes when associated with biological targets in Leishmania. Further, we used HAB as a reversible probe to study the binding of a portfolio of diverse chalcones and analogues in live promastigotes, using a combination of competitive flow cytometry analysis and cell microscopy. This pharmacological evaluation suggested that the binding of HAB in promastigotes was representative of chalcone pharmacology in Leishmania, with certain exogenous chalcones exhibiting competitive inhibition (ca. 20-30%) towards HAB whereas non-chalconic inhibitors showed weak capacity (ca. 3-5%) to block the probe intracellular binding. However, this methodology was restricted by the strong toxicity of several competing chalcones at high concentration, in conjunction with the limited sensitivity of the HAB fluorophore. This advocates for further optimization of this undirect target detection strategy using pharmacophore-derived reversible fluorescent probes.
Collapse
Affiliation(s)
- Ariane S Batista
- Nanotechnology Engineering Program, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia - COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-972, Brazil
| | | | - Sébastien Pomel
- Université Paris-Saclay, CNRS, BioCIS, 92296 Châtenay-Malabry, France
| | | | - Valérie Mazan
- Université de Strasbourg, Université de Haute-Alsace, CNRS, LIMA, UMR 7042, ECPM, 25 Rue Becquerel, 67000 Strasbourg, France
| | - Moses Lee
- Department of Chemistry, Georgia State University, Atlanta 30303, USA
| | | | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Eric Prina
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, Paris, France
| | - Romain Duval
- Université de Paris, IRD, MERIT, F-75006 Paris, France.
| |
Collapse
|
4
|
Medkour H, Bitam I, Laidoudi Y, Lafri I, Lounas A, Hamidat HK, Mekroud A, Varloud M, Davoust B, Mediannikov O. Potential of Artesunate in the treatment of visceral leishmaniasis in dogs naturally infected by Leishmania infantum: Efficacy evidence from a randomized field trial. PLoS Negl Trop Dis 2020; 14:e0008947. [PMID: 33338041 PMCID: PMC7781483 DOI: 10.1371/journal.pntd.0008947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/04/2021] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
Leishmaniasis is among the world’s most neglected diseases. Dogs are the main reservoirs/hosts of Leishmania infantum, causative agent of both canine and human visceral leishmaniosis. Canine leishmaniasis (CanL) represents a public health problem as one of the most prevalent zoonotic diseases worldwide. Current therapeutics present drawbacks; thus, there is a need for more effective, safer, and cheaper drugs. The aim of this study was to evaluate and to compare the efficacy of oral administration of artesunate or meglumine antimoniate/allopurinol in dogs with clinical leishmaniasis. Forty-two dogs with naturally occurring clinical leishmaniasis were included in this open-label, simple randomized positive-control clinical field trial with 6 months of follow-up. Dogs received meglumine antimoniate 100 mg/kg/day and allopurinol 30 mg/kg/day for 28 days (control group, n = 26) or artesunate 25 mg/kg/day for 6 days (test group, n = 16). The animals were evaluated for their clinical evolution, parasite load (by qPCR) and humoral response at different time points: 0, 30, 90, and 180 days after treatment. Data analyses showed a significant improvement in both groups in clinical scores, parasitemia and antibody titers after treatment. Compared to the control group, the artesunate group showed significantly lower clinical score (P = 0.0001), lower parasitemia (P = 0.0001) and antibody titers after 6 months of follow-up. Compared to baseline values, a rapid, significant reduction (P < 0.012) in antibody levels, 2.28- versus 3.04-fold for the control versus artesunate groups, respectively, was observed 30 days after treatment. Antibody levels continued to decrease further in the artesunate group, where 58% of cases became seronegative at the 6-month follow-up. All qPCR-positive dogs were negative after treatment with artesunate, while 14.3% remained positive with the appearance of two new cases in the control group. Artesunate was well tolerated, and no side effects were recorded. Treatment failures were similar in both groups with 27.27% (6/22), including 18.18% (4/22) mortality in the control group, versus 26.66% (4/15), including 13.33% (2/15) mortality in the artesunate group. This is the first report showing the potential of artesunate in the treatment of dogs with clinical leishmaniasis. Artesunate showed higher efficacy than the current first-line treatment for CanL without any adverse effects. It could be a good alternative chemotherapy for CanL, and may be considered for further studies in human leishmaniases. Further clinical trials are needed to confirm these findings, to determine if there are relapses after treatment and if dogs remain infective to sandflies, to define the ideal therapeutic dosage and duration of treatment with artesunate. Canine leishmaniasis (CanL) is a fatal, zoonotic vector-borne disease caused by Leishmania infantum, a common pathogen for both humans and dogs. Most CanL therapeutics are toxic, expensive, or ineffective. Artemisinin and derivatives have recently demonstrated potent antileishmanial activity in vitro and in experimental models. In this study, dogs with clinical leishmaniasis were randomly included in one of the treatment groups: meglumine antimoniate/allopurinol (control) or artesunate (alternative). Dogs were followed up for 6 months for their clinical score, parasitemia and Leishmania antibody levels. Both groups showed improved clinical scores, parasitemia and antibody titers after treatment. After six months of follow-up, treatment success was very similar in both groups, and 72.73% (16/22) of the controls versus 73.34% (11/15) in the artesunate group had clinical improvement. All dogs initially seropositive by PCR became negative after artesunate treatment, while 14.3% remained positive with the appearance of new cases in the control group. Antibody titers decreased rapidly (from day 30) from baseline especially in the artesunate group, where 58% of the dogs converted to seronegative after 6 months. Artesunate could be a good alternative for treatment of leishmaniasis. Additional clinical trials are needed to obtain more data on this drug.
Collapse
Affiliation(s)
- Hacène Medkour
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
- PADESCA Laboratory, Veterinary Science Institute, University Constantine 1, El Khroub, Algeria
| | - Idir Bitam
- Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- Superior School of Food Sciences and Food Industries of Algiers, Algeria
| | - Younes Laidoudi
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
- PADESCA Laboratory, Veterinary Science Institute, University Constantine 1, El Khroub, Algeria
| | - Ismail Lafri
- Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- Institute of Veterinary Sciences, University of Blida 1, Algeria
- Laboratory of Biotechnology related to Animal Reproduction (LBRA), University of Blida, Blida, Algeria
| | - Abdelaziz Lounas
- Institute of Veterinary Sciences, University of Blida 1, Algeria
- Laboratory of Biotechnology related to Animal Reproduction (LBRA), University of Blida, Blida, Algeria
| | - Hamza Karim Hamidat
- Department of Biology, Faculty of Sciences, University of Boumerdes, Algeria
| | - Abdeslam Mekroud
- PADESCA Laboratory, Veterinary Science Institute, University Constantine 1, El Khroub, Algeria
| | | | - Bernard Davoust
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| | - Oleg Mediannikov
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
- * E-mail:
| |
Collapse
|
5
|
Traditional application and modern pharmacological research of Artemisia annua L. Pharmacol Ther 2020; 216:107650. [DOI: 10.1016/j.pharmthera.2020.107650] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022]
|
6
|
Ortalli M, Varani S, Cimato G, Veronesi R, Quintavalla A, Lombardo M, Monari M, Trombini C. Evaluation of the Pharmacophoric Role of the O-O Bond in Synthetic Antileishmanial Compounds: Comparison between 1,2-Dioxanes and Tetrahydropyrans. J Med Chem 2020; 63:13140-13158. [PMID: 33091297 PMCID: PMC8018184 DOI: 10.1021/acs.jmedchem.0c01589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/17/2022]
Abstract
Leishmaniases are neglected diseases that can be treated with a limited drug arsenal; the development of new molecules is therefore a priority. Recent evidence indicates that endoperoxides, including artemisinin and its derivatives, possess antileishmanial activity. Here, 1,2-dioxanes were synthesized with their corresponding tetrahydropyrans lacking the peroxide bridge, to ascertain if this group is a key pharmacophoric requirement for the antileishmanial bioactivity. Newly synthesized compounds were examined in vitro, and their mechanism of action was preliminarily investigated. Three endoperoxides and their corresponding tetrahydropyrans effectively inhibited the growth of Leishmania donovani promastigotes and amastigotes, and iron did not play a significant role in their activation. Further, reactive oxygen species were produced in both endoperoxide- and tetrahydropyran-treated promastigotes. In conclusion, the peroxide group proved not to be crucial for the antileishmanial bioactivity of endoperoxides, under the tested conditions. Our findings reveal the potential of both 1,2-dioxanes and tetrahydropyrans as lead compounds for novel therapies against Leishmania.
Collapse
Affiliation(s)
- Margherita Ortalli
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
| | - Stefania Varani
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
- Department of Experimental, Diagnostic and Specialty
Medicine, Alma Mater Studiorum - University of Bologna, Via
Massarenti 9, 40138 Bologna, Italy
| | - Giorgia Cimato
- Unit of Clinical Microbiology, Regional Reference
Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi
University Hospital, Via Massarenti 9, 40138 Bologna,
Italy
| | - Ruben Veronesi
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
| | - Arianna Quintavalla
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| | - Marco Lombardo
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| | - Magda Monari
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
| | - Claudio Trombini
- Department of Chemistry “G. Ciamician”,
Alma Mater Studiorum - University of Bologna Via Selmi 2,
40126 Bologna, Italy
- Centro Interuniversitario di Ricerca sulla Malaria
(CIRM) - Italian Malaria Network (IMN), University of Milan,
20100 Milan, Italy
| |
Collapse
|
7
|
In vitro efficacy of synthesized artemisinin derivatives against Leishmania promastigotes. Bioorg Med Chem Lett 2020; 30:127581. [DOI: 10.1016/j.bmcl.2020.127581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 01/22/2023]
|
8
|
Synthesis and Antileishmanial Activity of 1,2,4,5-Tetraoxanes against Leishmania donovani. Molecules 2020; 25:molecules25030465. [PMID: 31979089 PMCID: PMC7038143 DOI: 10.3390/molecules25030465] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
A chemically diverse range of novel tetraoxanes was synthesized and evaluated in vitro against intramacrophage amastigote forms of Leishmania donovani. All 15 tested tetraoxanes displayed activity, with IC50 values ranging from 2 to 45 µm. The most active tetraoxane, compound LC140, exhibited an IC50 value of 2.52 ± 0.65 µm on L. donovani intramacrophage amastigotes, with a selectivity index of 13.5. This compound reduced the liver parasite burden of L. donovani-infected mice by 37% after an intraperitoneal treatment at 10 mg/kg/day for five consecutive days, whereas miltefosine, an antileishmanial drug in use, reduced it by 66%. These results provide a relevant basis for the development of further tetraoxanes as effective, safe, and cheap drugs against leishmaniasis.
Collapse
|
9
|
Leishmania treatment and prevention: Natural and synthesized drugs. Eur J Med Chem 2018; 160:229-244. [DOI: 10.1016/j.ejmech.2018.10.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022]
|
10
|
The leishmanicidal activity of artemisinin is mediated by cleavage of the endoperoxide bridge and mitochondrial dysfunction. Parasitology 2018; 146:511-520. [PMID: 30392476 DOI: 10.1017/s003118201800183x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Endoperoxides kill malaria parasites via cleavage of their endoperoxide bridge by haem or iron, leading to generation of cytotoxic oxygen-centred radicals. In view of the Leishmania parasites having a relatively compromised anti-oxidant defense and high iron content, this study aims to establish the underlying mechanism(s) accounting for the apoptotic-like death of Leishmania promastigotes by artemisinin, an endoperoxide. The formation of reactive oxygen species was confirmed by flow cytometry and was accompanied by inhibition of mitochondrial complexes I-III and II-III. However, this did not translate into a generation of mitochondrial superoxide or decrease in oxygen consumption, indicating minimal impairment of the electron transport chain. Artemisinin caused depolarization of the mitochondrial membrane along with a substantial depletion of adenosine triphosphatase (ATP), but it was not accompanied by enhancement of ATP hydrolysis. Collectively, the endoperoxide-mediated radical formation by artemisinin in Leishmania promastigotes was the key step for triggering its antileishmanial activity, leading secondarily to mitochondrial dysfunction indicating that endoperoxides represent a promising therapeutic strategy against Leishmania worthy of pharmacological consideration.
Collapse
|
11
|
Nor Azman NS, Hossan MS, Nissapatorn V, Uthaipibull C, Prommana P, Jin KT, Rahmatullah M, Mahboob T, Raju CS, Jindal HM, Hazra B, Mohd Abd Razak MR, Prajapati VK, Pandey RK, Aminudin N, Shaari K, Ismail NH, Butler MS, Zarubaev VV, Wiart C. Anti-infective activities of 11 plants species used in traditional medicine in Malaysia. Exp Parasitol 2018; 194:67-78. [PMID: 30268422 DOI: 10.1016/j.exppara.2018.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/02/2018] [Accepted: 09/23/2018] [Indexed: 10/28/2022]
Abstract
Treatment of drug resistant protozoa, bacteria, and viruses requires new drugs with alternative chemotypes. Such compounds could be found from Southeast Asian medicinal plants. The present study examines the cytotoxic, antileishmanial, and antiplasmodial effects of 11 ethnopharmacologically important plant species in Malaysia. Chloroform extracts were tested for their toxicity against MRC-5 cells and Leishmania donovani by MTT, and chloroquine-resistant Plasmodium falciparum K1 strain by Histidine-Rich Protein II ELISA assays. None of the extract tested was cytotoxic to MRC-5 cells. Extracts of Uvaria grandiflora, Chilocarpus costatus, Tabernaemontana peduncularis, and Leuconotis eugenifolius had good activities against L. donovani with IC50 < 50 μg/mL. Extracts of U. grandiflora, C. costatus, T. peduncularis, L. eugenifolius, A. subulatum, and C. aeruginosa had good activities against P. falciparum K1 with IC50 < 10 μg/mL. Pinoresinol isolated from C. costatus was inactive against L. donovani and P. falciparum. C. costatus extract and pinoresinol increased the sensitivity of Staphylococcus epidermidis to cefotaxime. Pinoresinol demonstrated moderate activity against influenza virus (IC50 = 30.4 ± 11 μg/mL) and was active against Coxsackie virus B3 (IC50 = 7.1 ± 3.0 μg/mL). β-Amyrin from L. eugenifolius inhibited L. donovani with IC50 value of 15.4 ± 0.01 μM. Furanodienone from C. aeruginosa inhibited L. donovani and P. falciparum K1 with IC50 value of 39.5 ± 0.2 and 17.0 ± 0.05 μM, respectively. Furanodienone also inhibited the replication of influenza and Coxsackie virus B3 with IC50 value of 4.0 ± 0.5 and 7.2 ± 1.4 μg/mL (Ribavirin: IC50: 15.6 ± 2.0 μg/mL), respectively. Our study provides evidence that medicinal plants in Malaysia have potentials as a source of chemotypes for the development of anti-infective leads.
Collapse
Affiliation(s)
- Nadiah Syafiqah Nor Azman
- School of Pharmacy, Faculty of Science, University of Nottingham Malaysia Campus, 43500 Semenyih, Malaysia
| | - Md Shahadat Hossan
- School of Pharmacy, Faculty of Science, University of Nottingham Malaysia Campus, 43500 Semenyih, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, 80161 Nakhon Si Thammarat, Thailand.
| | - Chairat Uthaipibull
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Parichat Prommana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Khoo Teng Jin
- School of Pharmacy, Faculty of Science, University of Nottingham Malaysia Campus, 43500 Semenyih, Malaysia
| | - Mohammed Rahmatullah
- Department of Pharmacy, Faculty of Life Science, University of Development Alternative, 1207 Dhaka, Bangladesh.
| | - Tooba Mahboob
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chandramathi Samudi Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hassan Mahmood Jindal
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Banasri Hazra
- Department of Pharmaceutical Technology, Jadavpur University, 70032, Kolkata, India
| | | | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, 305817 Rajasthan, India
| | - Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, 305817 Rajasthan, India
| | - Norhaniza Aminudin
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, University Putra Malaysia, 43400, Serdang, Malaysia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA Puncak Alam, 42300 Kuala Selangor, Malaysia
| | - Mark S Butler
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, St Lucia, Australia
| | - Vladimir V Zarubaev
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira str., 197101, St. Petersburg, Russia
| | - Christophe Wiart
- School of Pharmacy, Faculty of Science, University of Nottingham Malaysia Campus, 43500 Semenyih, Malaysia.
| |
Collapse
|
12
|
Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacol Res 2016; 117:192-217. [PMID: 27867026 DOI: 10.1016/j.phrs.2016.11.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 01/09/2023]
Abstract
Parasitic protozoan diseases continue to rank among the world's greatest global health problems, which are also common among poor populations. Currently available drugs for treatment present drawbacks, urging the need for more effective, safer, and cheaper drugs. Artemisinin (ART) and its derivatives are some of the most important classes of antimalarial agents originally derived from Artemisia annua L. However, besides the outstanding antimalarial and antischistosomal activities, ART and its derivatives also possess activities against other parasitic protozoa. In this paper we review the activities of ART and its derivatives against protozoan parasites in vitro and in vivo, including Leishmania spp., Trypanosoma spp., Toxoplasma gondii, Neospora caninum, Eimeria tenella, Acanthamoeba castellanii, Naegleria fowleri, Cryptosporidium parvum, Giardia lamblia, and Babesia spp. We conclude that ART and its derivatives may be good alternatives for treating other non-malarial protozoan infections in developing countries, although more studies are necessary before they can be applied clinically.
Collapse
|
13
|
Cortes S, Albuquerque A, Cabral LIL, Lopes L, Campino L, Cristiano MLS. In Vitro Susceptibility of Leishmania infantum to Artemisinin Derivatives and Selected Trioxolanes. Antimicrob Agents Chemother 2015; 59:5032-5. [PMID: 26014947 PMCID: PMC4505222 DOI: 10.1128/aac.00298-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022] Open
Abstract
Leishmaniasis is among the world's most neglected diseases. Currently available drugs for treatment present drawbacks, urging the need for more effective, safer, and cheaper drugs. A small library of artemisinin-derived trioxanes and synthetic trioxolanes was tested against promastigote and intramacrophage amastigote forms of Leishmania infantum. The trioxolanes LC50 and LC95 presented the best activity and safety profiles, showing potential for further studies in the context of leishmanial therapy. Our results indicate that the compounds tested exhibit peroxide-dependent activity.
Collapse
Affiliation(s)
- Sofia Cortes
- Global Health and Tropical Medicine (GHTM), Unidade de Ensino e Investigação de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal Centro de Malária e Outras Doenças Tropicais, IHMT, UNL, Lisbon, Portugal
| | - Andreia Albuquerque
- Global Health and Tropical Medicine (GHTM), Unidade de Ensino e Investigação de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Lília I L Cabral
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve (UAlg), Campus de Gambelas, Faro, Portugal Departamento de Química e Farmácia, UAlg, Campus de Gambelas, Faro, Portugal
| | - Liliana Lopes
- Global Health and Tropical Medicine (GHTM), Unidade de Ensino e Investigação de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal Departamento Ciências Biomédicas e Medicina, UAlg, Campus de Gambelas, Faro, Portugal
| | - Lenea Campino
- Global Health and Tropical Medicine (GHTM), Unidade de Ensino e Investigação de Parasitologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal Departamento de Química e Farmácia, UAlg, Campus de Gambelas, Faro, Portugal Departamento Ciências Biomédicas e Medicina, UAlg, Campus de Gambelas, Faro, Portugal
| | - Maria L S Cristiano
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve (UAlg), Campus de Gambelas, Faro, Portugal Departamento de Química e Farmácia, UAlg, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
14
|
Bernal FA, Coy-Barrera E. In-silico analyses of sesquiterpene-related compounds on selected Leishmania enzyme-based targets. Molecules 2014; 19:5550-69. [PMID: 24786692 PMCID: PMC6271876 DOI: 10.3390/molecules19055550] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/14/2014] [Accepted: 04/22/2014] [Indexed: 01/22/2023] Open
Abstract
A great number of sesquiterpenes are reported in the available literature as good antileishmanial leads. However, their mode of action at the molecular level has not been elucidated. The lack of molecular studies could be considered an impediment for studies seeking to improve sesquiterpene-based drug design. The present in silico study allows us to make important observations about the molecular details of the binding modes of a set of antileishmanial sesquiterpenes against four drug-enzyme targets [pteridine reductase-1 (PTR1), N-myristoyl transferase (NMT), cysteine synthase (CS), trypanothione synthetase (TryS)]. Through molecular docking it was found that two sesquiterpene coumarins are promising leads for the PTR1 and TryS inhibition purposes, and some xanthanolides also exhibited better affinity towards PTR1 and CS binding. In addition, the affinity values were clustered by Principal Component Analysis and drug-like properties were analyzed for the strongest-docking sesquiterpenes. The results are an excellent starting point for future studies of structural optimization of this kind of compounds.
Collapse
Affiliation(s)
- Freddy A Bernal
- Laboratorio de Química Bioorgánica, Departamento de Química, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cundinamarca 250240, AA 49300, Colombia.
| | - Ericsson Coy-Barrera
- Laboratorio de Química Bioorgánica, Departamento de Química, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cundinamarca 250240, AA 49300, Colombia.
| |
Collapse
|
15
|
Bargougui A, Champy P, Triki S, Bories C, Le Pape P, Loiseau P. Antileishmanial activity of Opuntia ficus-indica fractions. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bionut.2013.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Gohil VM, Brahmbhatt KG, Loiseau PM, Bhutani KK. Synthesis and anti-leishmanial activity of 1-aryl-β-carboline derivatives against Leishmania donovani. Bioorg Med Chem Lett 2012; 22:3905-7. [DOI: 10.1016/j.bmcl.2012.04.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 11/28/2022]
|
17
|
Sawadogo WR, Le Douaron G, Maciuk A, Bories C, Loiseau PM, Figadère B, Guissou IP, Nacoulma OG. In vitro antileishmanial and antitrypanosomal activities of five medicinal plants from Burkina Faso. Parasitol Res 2011; 110:1779-83. [PMID: 22037827 DOI: 10.1007/s00436-011-2699-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 10/12/2011] [Indexed: 01/26/2023]
Abstract
After ethnobotanical surveys in central and western regions of Burkina Faso, five plants namely Lantana ukambensis (Verbenaceae), Xeoderris sthulmannii (Fabaceae), Parinari curatellifollia (Chrysobalanaceae), Ozoroa insignis (Anacardiaceae), and Ficus platyphylla (Moraceae) were selected for their traditional use in the treatment of parasitic diseases and cancer. Our previous studies have focused on the phytochemical, genotoxicity, antioxidant, and antiproliferative activities of these plants. In this study, the methanol extract of each plant was tested to reveal probable antileishmanial and antitrypanosomal activities. Colorimetric and spectrophotometric methods were used for the detection of antileishmanial and antitrypanosomal activities. Leishmania donovani (LV9 WT) and Trypanosoma brucei brucei GVR 35 were used to test the antileishmanial and antitrypanosomal activities, respectively. All extracts of tested plants showed a significant antitrypanosomal activity with minimum lethal concentrations between 1.5 and 25 μg/ml, the L. ukambensis extract being the most active. In the antileishmanial test, only the extract from L. ukambensis showed significant activity with an inhibitory concentration (IC(50)) of 6.9 μg/ml. The results of this study contribute to the promotion of traditional medicine products and are preliminary for the isolation of new natural molecules for the treatment of leishmaniasis and trypanosomiasis.
Collapse
Affiliation(s)
- W R Sawadogo
- Institut de Recherche en Sciences de la Santé (IRSS/CNRST), 03 BP 7192, Ouagadougou 03, Burkina Faso.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lewin G, Cojean S, Gupta S, Verma A, Puri S, Loiseau P. In vitro antileishmanial properties of new flavonoids against Leishmania donovani. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.bionut.2011.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|