Effects of Soy–Whey Protein Nutritional Supplementation on Hematopoiesis and Immune Reconstitution in an Allogeneic Transplanted Mice.
Nutrients 2022;
14:nu14153014. [PMID:
35893870 PMCID:
PMC9332233 DOI:
10.3390/nu14153014]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 12/07/2022] Open
Abstract
Profound malnutrition and immunodeficiency are serious negative effects of radiotherapy and bone marrow transplantation for hematologic malignancy patients. This study aimed to evaluate the effects of nutritional supplementation with a soy–whey protein mixture on hematopoietic and immune reconstitution in an allogeneic transplant mouse model. Male BALB/c (H-2Kd) mice, 6–8 weeks-old, were divided randomly into five groups and then provided with different protein nutrition support. After 28 days, blood samples, bone marrow, spleen, and thymus were harvested to measure the effects. The results showed that soy–whey blended protein supplements promoted hematopoietic stem cell engraftment, body weight recovery, and the recovery of white blood cells, lymphocytes, and neutrophils; triggered the expansion of hematopoietic stem cells and progenitor cell pools by increasing the numbers of the c-kit+ progenitor, Lin-Sca1+c-kit+, short-term hematopoietic stem cells, and multipotent progenitors; enhanced thymus re-establishment and splenic subset recovery in both organ index and absolute number; improved overall nutritional status by increasing total serum protein, albumin, and globulin; protected the liver from radiation-induced injury, and increased antioxidant capacity as indicated by lower concentrations of alanine aminotransferase, aspartate aminotransferase, malondialdehyde, and 4-hydroxynonenal. This study indicated that soy–whey blended protein as important nutrients, from both plant and animal sources, had a greater positive effect on patients with hematological malignancies to accelerate hematopoiesis and immune reconstitution after bone marrow transplantation.
Collapse